Math, asked by minhaziyan, 5 months ago

plss answer this question with an appropriate explanation!


wrong answers or irralevant answers will be reported.. //

Attachments:

Answers

Answered by krishnasinghkm
4

Answer:

In ∆ABC,

by phythagoras theorem

(AC)^2=(AB)^2+(BC)^2

(20)^2=(AB)^2+(12)^2

(AB)^2=400-144

AB=√356

Answered by Yuseong
2

Required Solution:

Given:

  • AC ( Hypotenuse ) = 20cm

  • BC ( Base ) = 12cm

To calculate:

  • Unknown side ( AB or perpendicular )

Calculation:

Here, we'll apply pythagoras property to find out the measure of the perpendicular.

We know that,

  •  {\underline {\boxed {\Large {\bf \gray { {H}^{2} = {B}^{2} + {P}^{2} } }}}}

 \qquad  \sf { \longmapsto  {AC}^{2} = {BC}^{2} + {AB}^{2} }

 \qquad

 \qquad  \sf { \longmapsto  {20}^{2} = {12}^{2} + {AB}^{2} }

 \qquad

 \qquad  \sf { \longmapsto  400= 144 + {AB}^{2} }

 \qquad

 \qquad  \sf { \longmapsto  {AB}^{2} = 400 - 144 }

 \qquad

 \qquad  \sf { \longmapsto  {AB}^{2} = 256 }

 \qquad

 \qquad  \sf { \longmapsto  AB = \sqrt{256} }

 \qquad

 \qquad  \sf { \longmapsto  \boxed{ \mathfrak \pink {AB = 16cm}} }

 \underline { \sf { \therefore Unknown \: side \: of \: this \: ∆ \: is \: \bold{16cm} }}

▬▬▬▬▬▬▬▬▬▬▬

Verification:

  •  {\underline {\boxed {\Large {\bf \gray { {H}^{2} = {B}^{2} + {P}^{2} } }}}}

 \qquad  \sf { \longmapsto  {20}^{2} = {12}^{2} + {16}^{2} }

 \qquad

 \qquad  \sf { \longmapsto 400 = 144 + 256 }

 \qquad

 \qquad  \sf { \longmapsto 400 = 400}

 \underline { \sf { Hence, Verified!! } }

▬▬▬▬▬▬▬▬▬▬▬

Attachments:
Similar questions