Math, asked by khushi63759, 1 month ago

plss don't guess answer​

Attachments:

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

3 \cos( \theta)  - 4 \cos^{3} ( \theta)  = 1

 \implies3 \cos( \theta)  - 4 \cos^{3} ( \theta)   - 1 = 0 \\

 \implies  4 \cos^{3} ( \theta)   - 3 \cos( \theta)   +  1 = 0 \\

 \implies  4 \cos^{3} ( \theta)  + 4 \cos^{2} ( \theta)  - 4 \cos ^{2} ( \theta)   - 4 \cos( \theta) +  \cos( \theta)    +  1 = 0 \\

 \implies  4 \cos^{2} ( \theta) \{ \cos( \theta)   + 1 \}   - 4 \cos  ( \theta)  \{ \cos( \theta)  + 1 \}   +  \{ \cos( \theta)    +  1  \}= 0 \\

 \implies   \{ \cos( \theta)   + 1 \}  \{ 4 \cos^{2} ( \theta)- 4 \cos  ( \theta)      +  1  \}= 0 \\

 \implies    \cos( \theta)   + 1  = 0 \:  \:  \: or \:  \:  \:  4 \cos^{2} ( \theta)- 4 \cos  ( \theta)      +  1  = 0 \\

 \implies    \cos( \theta)   + 1  = 0 \:  \:  \: or \:  \:  \:  \{ 2 \cos ( \theta)-  1  \}^{2}   = 0 \\

 \implies    \cos( \theta)    =  -  1  \:  \:  \: or \:  \:  \:    \cos ( \theta) =    \frac{1}{2}       \\

 \implies    \cos( \theta)    =   \cos ( \pi)  \:  \:  \: or \:  \:  \:    \cos ( \theta) =     \cos \bigg( \frac{\pi}{3}  \bigg)        \\

 \implies    \theta  =   (2n + 1) \pi  \:  \:  \: or \:  \:  \:  \theta =     2m\pi \pm \frac{\pi}{3}          \\

Where, n,m\:\in\mathbb{N}

Now, since, \theta\in[-\pi,\pi], so,

the solution becomes

 \theta =   \pm \pi, \pm \frac{\pi}{3} ,\\

Answered by mathdude500
6

\large\underline{\sf{Given \:Question - }}

The number of solution(s) for the equation

\rm :\longmapsto\:3cos\theta - 4 {cos}^{3}\theta = 1 \: in \:  \: \theta \:  \in \: [ - \pi, \: \pi]

\large\underline{\sf{Solution-}}

Given Trigonometric equation is

\rm :\longmapsto\:3cos\theta - 4 {cos}^{3}\theta = 1 \: in \:  \: \theta \:  \in \: [ - \pi, \: \pi]

can be rewritten as

\rm :\longmapsto\: - ( - 3cos\theta + 4 {cos}^{3}\theta )= 1

\rm :\longmapsto\: 4 {cos}^{3}\theta - 3cos\theta=  - 1

We know,

\red{ \boxed{ \sf{ \:cos3x =  {4cos}^{3}x - 3cosx}}}

So, using this, we get

\rm :\longmapsto\:cos3\theta =  - 1

\rm :\longmapsto\:cos3\theta = cos\pi

We know,

\red{ \boxed{ \sf{ \:cosx = cosy \: \bf\implies \:x = 2n\pi \:  \pm \: y \: \:  \forall \: n \:  \in \: Z}}}

So, using this,

\rm :\longmapsto\:3\theta = 2n\pi \:  \pm \: \pi \:  \:  \forall \: n \:  \in \: Z

\rm :\longmapsto\:3\theta = (2n\:  \pm \: 1) \: \pi \:  \:  \forall \: n \:  \in \: Z

\bf :\longmapsto\:\theta = (2n\:  \pm \: 1) \:\dfrac{\pi}{3}  \:  \:  \forall \: n \:  \in \: Z

So,

As it is given that,

\rm :\longmapsto\: - \pi \leqslant \theta \leqslant \pi

So,

\bf\implies \:\theta =  - \dfrac{\pi}{3}, \:  \dfrac{\pi}{3}, \: \pi, \:  -  \: \pi

So,

\bf\implies \:\theta \: assumes \: 4 \: values \:

Thus,

\bf\implies \:Number \: of \: solutions \:  =  \: 4

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf T-eq & \bf Solution \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx = 0 & \sf x = n\pi\:  \forall \: n \:  \in \: Z \\ \\ \sf cosx = 0 & \sf x = (2n + 1)\dfrac{\pi}{2}\:  \forall \: n \:  \in \: Z\\ \\ \sf tanx = 0\: & \sf x = n\pi\:  \forall \: n \:  \in \: Z\\ \\ \sf sinx = siny & \sf x = n\pi + {( - 1)}^{n}y \\ \\ \sf cosx = cosy & \sf x = 2n\pi \pm \: y\:  \forall \: n \:  \in \: Z\\ \\ \sf tanx = tany & \sf x = n\pi + y\:  \forall \: n \:  \in \: Z \end{array}} \\ \end{gathered}\end{gathered}

Similar questions