plss give correct ans.
Answers
Answer:
into x and y and y and b then plus they both answer you will get the answer correct
Answer:
Hey u mate here is your answer..
Explanation:
We have,
(x^2+y^2)(a^2+b^2)=(ax+by)^2
Prove that, \dfrac{x}{a}=\dfrac{y}{b}.
∴ (x^2+y^2)(a^2+b^2)=(ax+by)^2
⇒ x^2(a^2+b^2)+y^2(a^2+b^2)=(ax)^2+(by)^{2} +2(ax)(by)
Using algebraic identity,
(x+y)^{2}=x^{2}+y^{2}+2xy
⇒ x^2a^2+x^2b^2+y^2a^2+y^2b^2=a^2x^2+b^2y^{2} +2abxy
⇒ x^2b^2+y^2a^2=2abxy
⇒ x^2b^2+y^2a^2-2abxy=0
⇒ (xb)^2+(ya)^2-2(xb)(ya)=0
Using algebraic identity,
(x-y)^{2}=x^{2}+y^{2}-2xy
⇒ (xb-ya)^2=0
⇒ xb - ya = 0
⇒ xb = ya
⇒ \dfrac{x}{a}=\dfrac{y}{b}, proved.
Hence, \dfrac{x}{a}=\dfrac{y}{b}, proved.
.
follow me, thanks me and mark me as brainliest...
if you want more help I am always ready to help you but follow me...
I hope u like my answer