Math, asked by khushi63759, 1 month ago

plss give proper explanation​

Attachments:

Answers

Answered by vjokanattigmailcom
0

Step-by-step explanation:

1/1-cosa÷1+/1cousa

answer=1casa

answer=1casa

2casa

Answered by mathdude500
4

 \green{\large\underline{\sf{Given \:Question - }}}

The expression

\rm :\longmapsto\: \sqrt{\dfrac{1 - cos \alpha }{1 + cos\alpha } }  +  \sqrt{\dfrac{1 + cos\alpha }{1 - cos\alpha } }  =

 \purple{\large\underline{\sf{Solution-}}}

The given expression is

\rm :\longmapsto\: \sqrt{\dfrac{1 - cos \alpha }{1 + cos\alpha } }  +  \sqrt{\dfrac{1 + cos\alpha }{1 - cos\alpha } }

can be rewritten as

\rm \:  =  \: \dfrac{ \sqrt{1 - cos\alpha } }{ \sqrt{1 + cos\alpha } }  + \dfrac{ \sqrt{1 + cos\alpha } }{ \sqrt{1 - cos\alpha } }

On taking LCM we get,

\rm \:  =  \: \dfrac{ {\bigg[ \:  \sqrt{1 - cos\alpha  \: }\bigg] }^{2}  +  {\bigg[ \sqrt{1 + cos\alpha }\bigg] }^{2} }{ \sqrt{1 + cos\alpha }  \: \sqrt{1 - cos\alpha } }

\rm \:  =  \: \dfrac{1 - cos\alpha  + 1 + cos\alpha }{ \sqrt{(1 + cos\alpha )(1 - cos\alpha )} }

We know,

\green{ \boxed{ \sf{ \:(x + y)(x - y) =  {x}^{2} -  {y}^{2}}}}

So, using this identity, we get

\rm \:  =  \: \dfrac{2}{ \sqrt{1 -  {cos}^{2}\alpha  } }

We know,

\red{ \boxed{ \sf{ \: {sin}^{2}x +  {cos}^{2}x = 1}}}

\rm \:  =  \: \dfrac{2}{ \sqrt{{sin}^{2}\alpha  } }

\rm \:  =  \: \dfrac{2}{sin \alpha }

\rm \:  =  \: 2 \: cosec\alpha

Hence,

 \red{\rm :\longmapsto\:\red{ \boxed{ \sf{ \: \sqrt{\dfrac{1 - cos \alpha }{1 + cos\alpha } }  +  \sqrt{\dfrac{1 + cos\alpha }{1 - cos\alpha } }  = 2 \: cosec\alpha }}}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions
Math, 9 months ago