Math, asked by AcTiOnKaMaEn, 10 days ago

Plss help me out
by answering this question​

Attachments:

Answers

Answered by Dalfon
102

Question:

If x + 1/x = ³√(4 + 2√2) + ³√(4 - 2√2), then the value of [√{(x³ + 1/x³) - 3(x + 1/x) + 1}/3] is

A. 0

B. 1

C. 2

D. 3

Answer:

B. 1

Step-by-step explanation:

\sf{ \rightarrow  \: x+  \frac{1}{x} =  \: ^{3}{\sqrt{4 + 2 \sqrt{2}} \: +  \: ^{3} \sqrt{4 - 2 \sqrt{2} }}}

\sf{ \rightarrow  \: x+  \frac{1}{x} =  \: ^{3}{\sqrt{4} \: +  \: ^{3} \sqrt{4 }}}

\sf{\rightarrow\:x+\frac{1}{x}=3.17}

\sf{\rightarrow{\purple{3}\:(approx.)}}

\rule{70mm}{1pt}

OR

\sf{ \rightarrow  \: x+  \frac{1}{x} =  \: ^{3}{\sqrt{4 + 2 \sqrt{2}} \: +  \: ^{3} \sqrt{4 - 2 \sqrt{2} }}}

\sf{ \rightarrow  \: x+  \frac{1}{x} =  \: ^{3}{\sqrt{4}  + \:  ^{3}\sqrt{2 \sqrt{2}}} \: +  \: ^{3} \sqrt{4} \: +  \:   ^{3}\sqrt{2 \sqrt{2}}}

\sf{ \rightarrow  \: x+  \frac{1}{x} =  \:1.58 + 1.78 + 1.58 - 1.78}

\sf{ \rightarrow  \: x+  \frac{1}{x} =  \:3.16}

\sf{\rightarrow{\purple{3}\:(approx.)}}

\rule{70mm}{1pt}

OR

\sf{ \rightarrow  \: x+  \frac{1}{x} =  \: ^{3}{\sqrt{4 + 2 \sqrt{2}} \: +  \: ^{3} \sqrt{4 - 2 \sqrt{2} }}}

Let's say 4 = a and 2√2 = b.

\sf{ \rightarrow  \: x+  \frac{1}{x} =  \: ^{3}{\sqrt{a + b} \: +  \: ^{3} \sqrt{a - b }}}

\sf{ \rightarrow  \: x+  \frac{1}{x} =  \: ^{3}{\sqrt{a} + \: ^{3}{ \sqrt{b} \: +  \: ^{3} \sqrt{a} -  \: ^{3} \sqrt{b}}}}

\sf{ \rightarrow  \: x+  \frac{1}{x} =  \: a^{ \frac{1}{3}} \:  +  \: a^{ \frac{1}{3}}}

\sf{ \rightarrow  \: x+  \frac{1}{x} =  \: 4^{ \frac{1}{3}} \:  +  \: 4^{ \frac{1}{3}} \:  \:  \: (As,\: a = 4)}

\sf{\rightarrow\:x+\frac{1}{x}=3.16}

\sf{\rightarrow{\purple{3}\:(approx.)}}

Now,

\implies\:\sf\purple{x+1/x=3}

Do cube on both sides,

\implies\:\sf{(x+1/x)^{3} = {3}^{3} }

\implies\:\sf{x^3+(1/x)^3+3(x)(1/x)=27}

\implies\:\sf{x^3+(1/x)^3=27-3}

\implies\:\sf\purple{x^3+(1/x)^3=24}

From above we have value of x + 1/x = 3 and x³ + 1/x³ = 24. Substitute value of x + 1/x and x³ + 1/x³ in [√{(x³ + 1/x³) - 3(x + 1/x) + 1}/3].

\sf\Rightarrow\:{ \dfrac{ \sqrt{( {x}^{3} +  \frac{1}{ {x}^{3} }) \: -3(x +  \frac{1}{x})+1}}{3} \:=\:\dfrac{ \sqrt{(24 - 3(3) + 1)} }{3}}

\sf\Rightarrow \: {\dfrac{ \sqrt{( {x}^{3} +  \frac{1}{ {x}^{3} }) \: -3(x +  \frac{1}{x})+1}}{3}= \dfrac{ \sqrt{(24 - 9+ 1)} }{3}}

\sf\Rightarrow \: {\dfrac{ \sqrt{( {x}^{3} +  \frac{1}{ {x}^{3} }) \: -3(x +  \frac{1}{x})+1}}{3}= \dfrac{ \sqrt{(24 - 8)} }{3}}

\sf\Rightarrow \: {\dfrac{ \sqrt{( {x}^{3} +  \frac{1}{ {x}^{3} }) \: -3(x +  \frac{1}{x})+1}}{3}=\dfrac{ \sqrt{16)} }{3}}

\sf\Rightarrow\:\dfrac{ \sqrt{( {x}^{3} +  \frac{1}{ {x}^{3} }) \: -3(x +  \frac{1}{x})+1}}{3}=\dfrac{4}{3}

\sf\Rightarrow\:{\dfrac{ \sqrt{( {x}^{3} +  \frac{1}{ {x}^{3} }) \: -3(x +  \frac{1}{x})+1}}{3}=1.33}

\sf\Rightarrow\:\purple{1} \:(approx.)

Therefore, the value of [√{(x³ + 1/x³) - 3(x + 1/x) + 1}/3] is 1.

Similar questions