Math, asked by scarlet65, 1 month ago

Plss help me solve this​

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \frac{ \sqrt{5}  + 1}{ \sqrt{5} - 1 }  +   \frac{ \sqrt{5} - 1 }{ \sqrt{5} + 1 }  \\

  = \frac{ (\sqrt{5}  + 1)( \sqrt{5} + 1) + ( \sqrt{5} - 1)( \sqrt{5} - 1)   }{( \sqrt{5} - 1 )( \sqrt{5} + 1) }   \\

  = \frac{ (\sqrt{5}  + 1)^{2} + ( \sqrt{5} - 1) ^{2}  }{( \sqrt{5}) ^{2}  - (1)^{2}   }   \\

We know, \rm \bold{(a+b)^{2}+(a-b)^{2}=2({a}^{2}+{b}^{2})}

So,

  = \frac{2  \{(\sqrt{5} )^{2}  + (1)^{2} \}   }{( \sqrt{5}) ^{2}  - (1)^{2}   }   \\

  = \frac{2  (5 + 1 )   }{5- 1   }   \\

  = \frac{2   \times 6  }{4  }   \\

  = \frac{ 3 }{2  }   \\

Answered by sahvish
0

Answer:

this is the ans of ur question.

Step-by-step explanation:

hope it will help u.

Attachments:
Similar questions