Math, asked by guptaabs73, 10 months ago

plss hurry up....need help guysssss​

Attachments:

Answers

Answered by warylucknow
0

The sum is 99.

Step-by-step explanation:

The expression is:

[\frac{1}{2}+\frac{1}{100}]+[\frac{1}{2}+\frac{2}{100}]+...+[\frac{1}{2}+\frac{99}{100}]

Compute the sum as follows:

[\frac{1}{2}+\frac{1}{100}]+[\frac{1}{2}+\frac{2}{100}]+...+[\frac{1}{2}+\frac{99}{100}]=[\frac{1}{2}+\frac{1}{2}..._{(99\ times)}]+[\frac{1}{100}+\frac{2}{100}+...+\frac{99}{100}]

                                                       =\frac{99}{2}+\frac{1}{100}[1+2+...+99]

The series is an AP with n = 99 terms.

The sum of n terms of an AP is:

S=\frac{n}{2}[2a+(n-1)d]

[\frac{1}{2}+\frac{1}{100}]+[\frac{1}{2}+\frac{2}{100}]+...+[\frac{1}{2}+\frac{99}{100}]=[\frac{1}{2}+\frac{1}{2}..._{(99\ times)}]+[\frac{1}{100}+\frac{2}{100}+...+\frac{99}{100}]

                                                       =\frac{99}{2}+\frac{1}{100}[1+2+...+99]

                                                       =\frac{99}{2}+\frac{1}{100}[\frac{99}{2}((2\times 1)+(99-1)1]

                                                       =\frac{99}{2}+\frac{1}{100}[\frac{99\times 100}{2}]

                                                       =\frac{99}{2}+\frac{99}{2}

                                                       =99

Thus, the sum is 99.

Answered by redlovergirl99
2

Step-by-step explanation:

Hey mate

Your answer is placed in the above attachment.

Hope it helps you

Attachments:
Similar questions