Math, asked by sohambhoyar535, 7 months ago

plss tell quickly solving in notebook​

Attachments:

Answers

Answered by Bidikha
13

To prove -

 \frac{ {a}^{ - 1} }{ {a}^{ - 1}  +  {b}^{ - 1} }  +  \frac{ {a}^{ - 1} }{ {a}^{ - 1}  -  {b}^{ - 1} }  =  \frac{2 {b}^{2} }{ {b}^{2} -  {a}^{2}  }

Proof -

L. H. S

 =  \frac{ {a}^{ - 1} }{ {a}^{ - 1} +  {b}^{ - 1}  }  +  \frac{ {a}^{ - 1} }{ {a}^{ - 1}  -  {b}^{ - 1} }

 =  \frac{ \frac{1}{a} }{ \frac{1}{a} +  \frac{1}{b}  }  +  \frac{ \frac{1}{a} }{ \frac{1}{a} -  \frac{1}{b}  }

 =  \frac{ \frac{1}{a} }{ \frac{b + a}{ab} }  +  \frac{ \frac{1}{a} }{ \frac{b - a}{ab} }

 =  \frac{1}{a}  \div  \frac{b + a}{ab}  +  \frac{1}{a}  \div  \frac{b - a}{ab}

 =  \frac{1}{a}  \times  \frac{ab}{b  + a}  +  \frac{1}{a}  \times  \frac{ab}{b - a}

 =  \frac{b}{b + a}  +  \frac{b}{b - a}

 =  \frac{b(b - a) + b(b + a)}{(b + a)(b - a)}

 =  \frac{ {b}^{2} - ab +  {b}^{2}  + ab }{ {b}^{2}  -  {a}^{2} }

 =  \frac{2 {b}^{2} }{ {b}^{2} -  {a}^{2}  }

R. H. S

Proved

Similar questions