Math, asked by pedenbhutia158, 4 days ago

plsss answer this !! and I'll mark I the brainest and plss no spam ಥ‿ಥ , it's an expansion sum ! ​

Attachments:

Answers

Answered by user0888
18

\Huge\text{(I) 5}

\Huge\text{(II) $\pm\sqrt{29}$}

\Huge\text{(III) $\pm5\sqrt{29}$}

\Huge\text{(IV) $27$}

\huge\text{\underline{\underline{Topic}}}

\Large\text{[Polynomials]}

\large\text{$\rightarrow$ Identity}

What is an identity?

An identity is an equation that is always true, no matter what value we substitute into.

Here, we will be using the perfect square identity.

\bold{Perfect\ square\ identity}

\text{$\cdots\longrightarrow\boxed{(x+y)^{2}=x^{2}+2xy+y^{2}}$}

\huge\text{\underline{\underline{Explanation 27. (I)}}}

\bold{Given\ equation}

\text{$\cdots\longrightarrow a=\dfrac{1}{a-5}$}

Notice that the inverse of both equations is equal.

\text{$\cdots\longrightarrow a-5=\dfrac{1}{a}$}

\text{$\cdots\longrightarrow\boxed{a-\dfrac{1}{a}=5}$}

\huge\text{\underline{\underline{Explanation 27. (II)}}}

\bold{Given\ equation}

\text{$\cdots\longrightarrow\boxed{a-\dfrac{1}{a}=5}$}

By squaring both sides, -

\text{$\cdots\longrightarrow a^{2}-2+\dfrac{1}{a^{2}}=25$}

\text{$\cdots\longrightarrow a^{2}+2+\dfrac{1}{a^{2}}=29$}

\text{$\cdots\longrightarrow (a+\dfrac{1}{a})^{2}=29$}

\text{$\cdots\longrightarrow\boxed{a+\dfrac{1}{a}=\pm\sqrt{29}}$}

\huge\text{\underline{\underline{Explanation 27. (III)}}}

\bold{Given\ equation}

\text{$\cdots\longrightarrow\boxed{\begin{cases} & a+\dfrac{1}{a}=\pm\sqrt{29} \\\\ & a-\dfrac{1}{a}= 5\end{cases}}$}

By polynomial identity -

\text{$\cdots\longrightarrow a^{2}-\dfrac{1}{a^{2}}=(a+\dfrac{1}{a})(a-\dfrac{1}{a})$}

\text{$\cdots\longrightarrow\boxed{a^{2}-\dfrac{1}{a^{2}}=\pm5\sqrt{29}}$}

\huge\text{\underline{\underline{Explanation 27. (IV)}}}

\bold{Given\ equation}

\text{$\cdots\longrightarrow\boxed{a-\dfrac{1}{a}=5}$}

By squaring both sides -

\text{$\cdots\longrightarrow a^{2}-2+\dfrac{1}{a^{2}}=25$}

\text{$\cdots\longrightarrow\boxed{a^{2}+\dfrac{1}{a^{2}}=27}$}

In these types of problems, knowing the appropriate identity to solve the problem is important. Let's keep learning, I hope it helps!

Similar questions