Math, asked by Anonymous, 9 months ago

plsss AnsWer this question :)​

Attachments:

Answers

Answered by Anonymous
4

Answer:

\sf   \dfrac{{x}^{a \: (b - c)} }{ {x}^{b \: (a - c)} } \:  \div  \:  \bigg \lgroup   \dfrac{ {x}^{b} }{ {x}^{a} } \bigg \rgroup^{c}  \:  =  \: 1

\\

Now,

\sf   \dfrac{{x}^{ab \:  -  \: ac} }{ {x}^{ba \:  - \: b c} } \:  \div  \:  \bigg \lgroup   \dfrac{ ({x}^{b} )}{( {x}^{a}) } \bigg \rgroup^{c}  \:  =  \: 1

\\

\sf   \dfrac{{x}^{ab \:  -  \: ac} }{ {x}^{ba \:  - \: b c} } \:  \div  \:   \dfrac{ {x}^{bc} }{{x}^{ac} } \:  =  \: 1

\\

We know that,

When sign change from division to multiplication we should do reciprocal of next number.

Therefore we get,

\sf   \dfrac{{x}^{ab \:  -  \: ac} }{ {x}^{ba \:  - \: b c} } \:   \times \:   \dfrac{ {x}^{ac} }{{x}^{bc} } \:  =  \: 1

\\

\sf   \dfrac{{x}^{ab \:  -  \:  \cancel {ac }\:  +  \:  \cancel{ac}} }{ {x}^{ba \:  - \: \cancel{ b c} \:  +  \:  \cancel{bc}} }  \:  =  \: 1

\\

\sf   \dfrac{{x} \:  ^{ \cancel{ab}} }{ {x} \: ^{\cancel{ba}} }  \:  =  \: 1

\\

 \bigstar \: \:   \underline{ \boxed{\sf   x  \:  =  \: 1}} \: \:  \bigstar

\\

 \huge\bf \dag \:   \gray{RHS = LHS} \:  \dag

\\

\large \boxed{\boxed{\star \:  \tt Hence, Verified  \: \star}}

Answered by sunitazirange
1

Answer:

{x^ab-ac)/x^ab - bc} / x^bc/x^ac

x^ab-ac - ab-bc / x^bc - ac

(-ab and +ab gets cancelled)

[a^0 = 1 ; a^m/a^n = a^m-n] i have used these two formulaes all over the answer........

x^-ac-bc  / x^bc - ac

x^-ac+ac+bc-bc

x^0 = 1

hope it helps!

plz mark as brainliest !

Step-by-step explanation:

Similar questions