Math, asked by shuklatj, 11 months ago

plsss solve it!!!!!!!​

Attachments:

Answers

Answered by Reyaansh314
1

Solution :

 \mathfrak{LHS} \:  =   \mathsf{\:    \sqrt{\dfrac{1 \:  -  \:  \cos\alpha  }{1 \:  +  \:  \cos\alpha } }}  \\ \ \mathsf{Multiply  \: the \:  Numerator \:  and \:  Denominator \:  by(1 \:  +  \:  \cos\alpha ) :  }  \\  \:  \:  \:   \quad  \quad \mathsf{  =  \sqrt{ \dfrac{1 \:  -  \:  \cos \alpha  }{1 \:  +  \:  \cos\alpha }  \: \times  \:  \dfrac{1 \:  +  \:  \cos \alpha  }{1 \:  +  \:  \cos \alpha  } } } \\    \:  \:  \:  \quad \quad =  \:  \sqrt{ \dfrac{ {1}^{2}  \:  -  \:  { \cos}^{2}\alpha  }{(1 \:  +  \:  \cos\alpha )^{2} } }  \\   \mathsf{ \quad \quad \:  \:  \:  =  \:  \sqrt{ \dfrac{ \sin {}^{2}  \alpha  }{(1 \:  +  \:  \cos\alpha ) {}^{2} } } } \\  \:  \:  \: \quad \quad =  \:  \sqrt{ {   \bigg(\dfrac{ \sin \alpha  }{1 \:  +  \:  \cos \alpha  } }   \bigg)^{2} }  \\  \:  \:  \:  \quad \quad =  \:  \dfrac{ \sin \alpha }{1 \:  +  \:  \cos \alpha  }  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \mathfrak{ =  \: RHS}

Proved !!

Identities Used :

\mathsf{ \implies ( a \: + \: b)(a \: - \: b) \: = \: a^2 \: - \: b^2} \\ \mathsf{ \implies \: 1 \: - \: cos^2 \theta \: = \: sin^2\theta}</p><p></p><p>

Similar questions