Math, asked by ashlinjose, 1 month ago

plsss tell fast
55555

Attachments:

Answers

Answered by anindyaadhikari13
10

\texttt{\textsf{\large{\underline{Question 1}:}}}

Given:

 \sf \implies {3}^{ {x}^{2} }:{3}^{2x}  = 27:1

We have to find the values of x.

 \sf \implies  \dfrac{ {3}^{ {x}^{2} } }{ {3}^{2x} }  =  \dfrac{27}{1}

As we know that:

 \sf \implies \dfrac{ {x}^{a} }{ {x}^{b} } =  {x}^{a - b}

Therefore:

 \sf \implies  {3}^{ {x}^{2} - 2x}  = 27

 \sf \implies  {3}^{ {x}^{2} - 2x}  = {3}^{3}

Comparing base, we get:

 \sf \implies  {x}^{2} - 2x = 3

 \sf \implies  {x}^{2} - 2x - 3 = 0

By splitting the middle term, we get:

 \sf \implies  {x}^{2} - 3x  + x- 3 = 0

 \sf \implies x(x - 3)  + 1(x- 3 )= 0

 \sf \implies (x+ 1)(x- 3 )= 0

Therefore:

 \implies \begin{cases} \sf x + 1 = 0 \\ \sf x - 3 = 0 \end{cases}

 \sf \implies x = -1,3 \:  \:  \:  \:  \: (Answer)

\texttt{\textsf{\large{\underline{Question 2}:}}}

Given:

 \sf \implies {144}^{ {x}^{2} - 2 } -  {12}^{3x - 2}  = 0

We have to find out the values of x.

The given equation can be written as:

 \sf \implies {144}^{ {x}^{2} - 2 } =  {12}^{3x - 2}

 \sf \implies {( {12}^{2} )}^{ {x}^{2} - 2 } =  {12}^{3x - 2}

 \sf \implies {(12)}^{ 2{x}^{2} -4} =  {12}^{3x - 2}

Comparing base, we get:

 \sf \implies2 {x}^{2}  - 4 = 3x - 2

 \sf \implies2 {x}^{2} - 3x  - 2 = 0

By splitting the middle term, we get:

 \sf \implies2 {x}^{2} - 4x  + x - 2 = 0

 \sf \implies 2x(x -2)  + 1(x - 2) = 0

 \sf \implies (2x+ 1)(x - 2) = 0

Therefore:

 \implies \begin{cases} \sf2 x + 1 = 0 \\ \sf x - 2 = 0 \end{cases}

 \sf \implies x =  \dfrac{ - 1}{2} ,2 \:  \:  \:  \:  \: (Answer)

Similar questions