Math, asked by ritha1, 1 year ago

plssss help guys ...... tell the answer

Attachments:

ritha1: plsssssssssssssssssssssssssss
ritha1: answer fastly guys

Answers

Answered by Bunti360
1
Here is the answer :

Formulas We need :
(1) Sin² A + Cos² A = 1,
(2) Sec A = 1/Cos A, Cosec A = 1/Sin A,

For my Convenience I am considering theta as A, and Cosec as Csc

=>
 \sqrt{ {sec}^{2} \: a+ {csc}^{2} \: a}
=>
 \sqrt{ ({ \frac{1}{cos \: a}) }^{2} + ({ \frac{1}{sin \: a} }^{2}) }
=>
 \sqrt{ \frac{( {cos \: a) }^{2} + ({sin \: a})^{2} }{( {cos \: a})^{2} \times ( {sin \: a \: )}^{2} } }
=>
 \frac{1}{cos \: a \: \times \: sin \: a}

We know that,
 {cos \:}^{2} \: a \: + \: {sin}^{2} \: a \: \: = \: 1

=>
 \frac{ {sin}^{2} \: a \: + \: {cos}^{2} \: a}{sin \: a \: \times \: cos \: a \: }
=>
 \frac{ {sin}^{2} \: a }{sin \: a \: \times \: cos \: a} \: + \: \frac{ {cos}^{2} \: a }{sin \: a \: \times \: cos \: a}
=>
 \frac{sin \: a \: }{cos \: a \: } + \: \frac{cos \: a \: }{sin \: a}

=>
tan \: a \: + \: cot \: a

Therefore : Hence Proved !!

Hope you understand, Have a Great day :D,
Thanking you, Bunti 360 !..
Similar questions