Math, asked by kiranjit63, 1 month ago

Plssss sloveeeee thiss queee ​

Attachments:

Answers

Answered by Anonymous
2

 \frac{1}{ \sqrt{3}  -  \sqrt{2} } =  \frac{1( \sqrt{3} +  \sqrt{2} ) }{ \sqrt{3} -  \sqrt{2} + ( \sqrt{3}+  \sqrt{2})}=  \frac{ \sqrt{3} +  \sqrt{2} }{( { \sqrt{3} })^{2} - ({ \sqrt{2} })^{2} }  =  \frac{ \sqrt{3}  +  \sqrt{2} }{3 - 2}  =  \sqrt{3}  +  \sqrt{2}

hope it helps

thank you

answer- √3+√2

Answered by Anonymous
31

{\large{\bf{\red{\underline{Given :}}}}}

Rationalize the denominator of :

{\sf{ \frac{1}{ \sqrt{3}  -  \sqrt{2} } }}

{\large{\bf{\blue{\bf{\underline{Solution :}}}}}}

{\bf{ \frac{1}{ \sqrt{3}  -  \sqrt{2} } }}

{\mapsto{\sf{ \frac{1}{ \sqrt{3}  -  \sqrt{2} } \times  \frac{ \sqrt{3}  + \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2} }  }}}

{\mapsto{\sf{ \frac{ \sqrt{3}  +  \sqrt{2} }{ (\sqrt{ {3}^{2} } ) -  (\sqrt{ {2}^{2} }) } }}}

{\mapsto{\sf{  \frac{\sqrt{3}  +   \sqrt{2}}{3 - 2}  }}}

{\mapsto{\sf{  \frac{ \sqrt{3}  +   \sqrt{2}  }{1}   }}}

{\large{\purple{\longrightarrow{\underline{\boxed{\bf{  \sqrt{3} +  \sqrt{2}  }}}}}}}

{\large{\maltese{\bf{So,}}}}

The answer is 3 + 2 .

 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄

Similar questions