Math, asked by nishuwu06, 18 days ago

plsssss solve this question

Attachments:

Answers

Answered by mathdude500
10

Given Appropriate Question :-

Prove that,

 \sf \: \displaystyle\lim_{n \to  \infty }\bigg[\dfrac{ {1}^{2} }{ {1}^{3}  +  {n}^{3}} + \dfrac{ {2}^{2} }{ {2}^{3}  +  {n}^{3}}  +  -  -  -  + \dfrac{ {n}^{2} }{ {n}^{3}  +  {n}^{3} }\bigg] =  \frac{1}{3}log2

Consider,

 \sf \: \displaystyle\lim_{n \to  \infty }\bigg[\dfrac{ {1}^{2} }{ {1}^{3}  +  {n}^{3}} + \dfrac{ {2}^{2} }{ {2}^{3}  +  {n}^{3}}  +  -  -  -  + \dfrac{ {n}^{2} }{ {n}^{3}  +  {n}^{3} }\bigg]

can be rewritten as

\rm \:  =  \:\displaystyle\lim_{n \to  \infty }\displaystyle\sum_{r=1}^{r=n}\bigg[\dfrac{ {r}^{2} }{ {r}^{3}  +  {n}^{3} }\bigg]

can be further rewritten as

\rm \:  =  \:\displaystyle\lim_{n \to  \infty }\displaystyle\sum_{r=1}^{r=n}\bigg[\dfrac{\dfrac{ {r}^{2} }{ {n}^{2} }  \times \dfrac{1}{n} }{\dfrac{ {r}^{3} }{ {n}^{3} }  + 1} \bigg]

can be rewritten as

\rm \:  =  \:\displaystyle\lim_{n \to  \infty } \frac{1}{n} \displaystyle\sum_{r=1}^{r=n}\bigg[\dfrac{\dfrac{ {r}^{2} }{ {n}^{2} }   }{\dfrac{ {r}^{3} }{ {n}^{3} }  + 1} \bigg]

We know,

Summation of series using Limit as sum is solved as

\rm :\longmapsto\:\displaystyle\lim_{n \to  \infty } \frac{1}{n} \displaystyle\sum_{r=h}^{r=g}f\bigg[\dfrac{r}{n} \bigg]

is expressed as

\rm \:  =  \:\displaystyle\int_{a}^{b}f(x) \: dx

where,

\boxed{ \tt{ \: \displaystyle\sum \: is \: replaced \: as \:   \int}}

\boxed{ \tt{ \:  \frac{r}{n} \: is \: replaced \: as \: x}}

\boxed{ \tt{ \:  \frac{1}{n} \: is \: replaced \: as \: dx}}

\boxed{ \tt{ \: a = \displaystyle\lim_{n \to  \infty } \frac{h}{n} }}

\boxed{ \tt{ \: b = \displaystyle\lim_{n \to  \infty } \frac{g}{n} }}

So, above expression can be rewritten as

\rm \:  =  \:\displaystyle\int_{0}^{1} \frac{ {x}^{2} }{ {x}^{3}  + 1}  \: dx

can be rewritten as

\rm \:  =  \: \dfrac{1}{3} \displaystyle\int_{0}^{1} \frac{ 3{x}^{2} }{ {x}^{3}  + 1}  \: dx

We know,

\boxed{ \tt{ \: \displaystyle\int \:  \frac{f'(x)}{f(x)}  \: dx \:  =  \: logf(x) \:  +  \: c}}

So, using this, we get

\rm \:  =  \:\dfrac{1}{3} \bigg[log | {x}^{3}  + 1| \bigg]_{0}^{1}

\rm \:  =  \:\dfrac{1}{3} \bigg[log | {1}^{3}  + 1|  - log |0 + 1| \bigg]

\rm \:  =  \:\dfrac{1}{3} \bigg[log |1  + 1|  - log |1| \bigg]

\rm \:  =  \:\dfrac{1}{3} \bigg[log |2|  \bigg]

Hence, proved

Similar questions