plx help me guys solving this
Attachments:
Answers
Answered by
5
Hey friend, Harish here.
Here is your answer:
Let :
( x² - y²) = p , (y² - z²) = q , (z² - x²) = r .
(x-y) = h , (y-z) = i , ( z-x) = j
To find,
Solution:
⇒
We know that,
If ( a + b + c ) = 0, Then, a³ + b³ + c³ = 3 abc (Identity)
Then,
( p + q + r ) = (x² - y²) + (y² - z²) + (z² - x²) = (x²-x²) + (y²-y²) + (z²-z²) = 0
So, p³ + q³ + r³ = 3pqr = 3(x² - y²)(y² - z²)(z² - x²)
And, ( h + i + j ) = (x - y) + (y - z) + (z - x) = (x-x) + (y-y) + (z-z) = 0
Then, (h³ + i³ + j³) = 3 hij = 3(x - y)(y - z)(z - x)
Then,
⇒
We know that,
(a² - b²) = (a+b)(a-b) [ Identity ]
So,
⇒
Now, the like terms get cancelled,
Then we get.
⇒
Therefore the answer is
____________________________________________________
Hope my answer is helpful to you.
Here is your answer:
Let :
( x² - y²) = p , (y² - z²) = q , (z² - x²) = r .
(x-y) = h , (y-z) = i , ( z-x) = j
To find,
Solution:
⇒
We know that,
If ( a + b + c ) = 0, Then, a³ + b³ + c³ = 3 abc (Identity)
Then,
( p + q + r ) = (x² - y²) + (y² - z²) + (z² - x²) = (x²-x²) + (y²-y²) + (z²-z²) = 0
So, p³ + q³ + r³ = 3pqr = 3(x² - y²)(y² - z²)(z² - x²)
And, ( h + i + j ) = (x - y) + (y - z) + (z - x) = (x-x) + (y-y) + (z-z) = 0
Then, (h³ + i³ + j³) = 3 hij = 3(x - y)(y - z)(z - x)
Then,
⇒
We know that,
(a² - b²) = (a+b)(a-b) [ Identity ]
So,
⇒
Now, the like terms get cancelled,
Then we get.
⇒
Therefore the answer is
____________________________________________________
Hope my answer is helpful to you.
BrainlyHulk:
great
Answered by
6
heya....!!!!!
{(x² - y²)³ + (y² - z²)³ + (z² - x²)³} / {(x - y)³ + (y -z )³ + (z - x)³}
=> [ {(x^6 - y^6 - 3x²y²(x² - y²)} + {y^6 - z^6 - 3y²z²(y² - z²)} + {z^6 - x^6 - 3z²x²(z² -x²)} ] / [{x³ - y³ - 3xy(x - y) + {y³ - z³ - 3yz(y - z)} + {z³ - x³ - 3zx(z - x)}
=> [ (x^6 - x^6 + y^6 - y^6 + z^6 - z^6) - 3(x²y²y²z²z²x²)(x² - y²)(y² - z²)(z² - x²) ] / [ (x³ - x³ + y³ - y³ + z³ - z³) - 3(xy×yz×zx)(x - y)(y - z)(z - x) ]
=> [ - 3x⁴y⁴z⁴(x² - y²)(y² - z²)(z² - x²) ] / [ - 3x²y²z²(x -y)(y - z)(z - x) ]
=> x²y²z²(x + y)(y + z)(z + x)
{(x² - y²)³ + (y² - z²)³ + (z² - x²)³} / {(x - y)³ + (y -z )³ + (z - x)³}
=> [ {(x^6 - y^6 - 3x²y²(x² - y²)} + {y^6 - z^6 - 3y²z²(y² - z²)} + {z^6 - x^6 - 3z²x²(z² -x²)} ] / [{x³ - y³ - 3xy(x - y) + {y³ - z³ - 3yz(y - z)} + {z³ - x³ - 3zx(z - x)}
=> [ (x^6 - x^6 + y^6 - y^6 + z^6 - z^6) - 3(x²y²y²z²z²x²)(x² - y²)(y² - z²)(z² - x²) ] / [ (x³ - x³ + y³ - y³ + z³ - z³) - 3(xy×yz×zx)(x - y)(y - z)(z - x) ]
=> [ - 3x⁴y⁴z⁴(x² - y²)(y² - z²)(z² - x²) ] / [ - 3x²y²z²(x -y)(y - z)(z - x) ]
=> x²y²z²(x + y)(y + z)(z + x)
Similar questions