plx help me is solving this
according to 10 board
Attachments:
Answers
Answered by
1
Answer:
g(x)=x²-2mn--(m²-n²)²
Step-by-step explanation:
Let f(x)=2x²+2(m+n)x+m²+n²
p and q are zeros of f(x)
so p+q=-2(m+n)/2=-(m+n)
pq=m²+n²/2
Now the polynomial with zeros
let h= (p+q)²,and k=(p-q)²
sum of zeros h+k=(p+q)²+(p-q)²=2(p²+q²)
=2 [ (p+q)²-2pq]=(m+n)²-2(m²+n²)/2=(m+n)²-m²-n²=2mn
so h+k=2mn------------------(1)
product of zeros=
hk=(p+q)²*(p-q²
=(p²-q²)²
=(p+q)²(p-q)²
=(p+q)²[ (p+q)²-4pq]
Putting value from above
hk=(m+n)²[ (m+n)²-4(m²+n²)/2)
=(m+n)²[(m+n)²-2m²-2n²]
=(m+n)²(-m²-n²+2mn
=-(m-n)2(m²+n²-2mn)
=-(m-n)2(m-n)2
hk=-(m²-n²)²-----------------------(2)
So the polynomial with h and k as zeros will be
g(x)=x²-(h+k)x+hk
g(x)=x²-2mn--(m²-n²)²
Anonymous:
ok ,Study the solution carefully,if doubts comments please
Similar questions