Math, asked by sakshammanral4, 6 months ago

plz and all questions ​

Attachments:

Answers

Answered by amanamandeep258
0

Answer:

question. 0 ans lagta hai

Step-by-step explanation:

please follow me

Answered by kedarsanika1111
1

Step-by-step explanation:

Q.1

12ax + 6 {b}^{2}  - 4ab - 18bx

Factor out 2 from the expression

2(6ax + 3 {b}^{2}   - 2ab - 9bx)

Factor out 2a from the expression

2(2a \times (3x - b) + 3 {b}^{2} - 9bx)

Factor out -3b from the expression

2(2a \times (3x - b) - 3b \times ( - b + 3x))

Factor out 3x - b from the expression

Solution :

2(3x - b) \times (2a - 3b)

Q.2

36 {a}^{2}  {b}^{2}  {c}^{2}  - 54 {a}^{3}  {b}^{3}  {c}^{3}  + 72 {a}^{4}  {b}^{4}  {c}^{4}

Factor out 18a²b²c² from the expression

Solution :

18 {a}^{2}  {b}^{2}  {c}^{2}  \times (2 - 3abc + 4 {a}^{2}  {b}^{2}  {c}^{2} )

Q.3

 {x}^{2}  - 11x + 30

Write -11x as a difference

 {x}^{2}  - 5x - 6x + 30

Factor out x from the expression

x \times (x - 5) - 6x + 30

Factor out -6 from the expression

x \times (x - 5) - 6(x - 5)

Factor out x - 5 from the expression

Solution :

(x - 5) \times (x - 6)

Q.4

 \frac{25 {x}^{2}  {y}^{2} {z}^{2}( {x}^{2} - 14x - 51)   }{5xyz(x - 17)( {x}^{2}  - 9)}

Write -14x as a difference

 \frac{25 {x}^{2} {y}^{2}  {z}^{2} \times ( {x}^{2}  + 3x - 17x  - 51) }{5xyz \times (x - 17) \times ( {x}^{2} - 9) }

Using a² - b² = ( a - b ) ( a + b ) , factor the expression

 \frac{25 {x}^{2}  {y}^{2} {z}^{2} \times ( {x}^{2} + 3x - 17x - 51)   }{5xyz \times (x - 17) \times (x - 3) \times (x + 3)}

Reduce the fraction with 5

 \frac{5 {x}^{2} {y}^{2} {z}^{2} \times ( {x}^{2} + 3x - 17x - 51)    }{xyz \times (x - 17) \times (x - 3) \times (x + 3)}

Simplify the expression

 \frac{5xyz \times ( {x}^{2} + 3x - 17x - 51) }{(x - 17) \times (x - 3) \times (x + 3)}

Factor out x from the expression

 \frac{5xyz \times (x(x + 3) - 17x - 51)}{(x - 17) \times (x - 3) \times (x + 3)}

Factor out -17 from the expression

 \frac{5xyz \times (x \times (x + 3) - 17(x + 3))}{(x - 17) \times (x - 3) \times (x + 3)}

Factor out x + 3 from the expression

 \frac{5xyz \times (x + 3) \times (x - 17)}{(x - 17) \times (x - 3) \times (x + 3)}

Reduce the fraction with x + 3

 \frac{5xyz \times (x - 17)}{(x - 17) \times (x - 3)}

Reduce the fraction with x - 17

Solution :

 \frac{5xyz}{x - 3}

Q.5

16 {a}^{4}  -  \frac{1}{81}

Divide both sides of the equation by 16

 {a}^{4}  =  \frac{1}{1296}

Take the root of both sides of the equation and remember to use both positive and negative roots

a  =  +   and -  \:  \:   \frac{1}{6}

Write the solutions, one with + sign & one with

- sign

a =  -  \frac{1}{6}  \\ \\  a =  \frac{1}{6}

The equation has 2 solutions

 a_{1} =  -  \frac{1}{6} \:  \:   and \:  \:  a_{2} =  \frac{1}{6}

Q.6

 {p}^{4}  -  {(p - q)}^{4}

Using a² - b² = (a-b)(a+b) , factor the expression

 = ( {p}^{2}  - (p - q) ^{2}  \times ( {p}^{2}  + (p - q) ^{2} )

 = (p - (p - q)) \times (p + (p - q)) \times ( {p}^{2}  + (p - q) ^{2} )

Using (a-b)² = a²-2ab+b² , expand the expression

(p - (p - q)) \times (p + (p - q)) \times ( {p}^{2}  +  {p}^{2}  - 2pq +  {q}^{2} )

When there is - in front of an expression in parentheses, change the sign of each term in the expression

(p - p + q) \times (p + (p - q)) \times ( {p}^{2}  +  {p}^{2}  - 2pq +  {q}^{2} )

Collect like terms

(p - p + q) \times (p + p - q) \times (2 {p}^{2}  - 3pq +  {q}^{2})

Since two opposites add up to zero, remove them from the expression

q \times (p + p - q) \times (2 {p}^{2}  - 2pq +  {q}^{2} )

Collect like terms

Solution :

q \times (2p - q) \times (2 {p}^{2} - 2pq +  {q}^{2}  )

Here is your answer...

Similar questions