Math, asked by overpoisongaming, 9 months ago

Plz ans as soon as possible

Attachments:

Answers

Answered by MaIeficent
11

Step-by-step explanation:

\bf{\underline{\underline\red{To\:Prove:-}}}

  •  \rm \sin \theta(1 +  \tan \theta) +  \cos \theta(1 +  \cot \theta) =  \sec \theta +  \cosec \theta

\bf{\underline{\underline\blue{Proof:-}}}

\boxed{  \rm   \tan \theta =  \dfrac{sin \theta}{cos \theta}   \:  \: \: and \:  \:  \: cot \theta =  \dfrac{cos \theta}{sin \theta} }

 \rm  =  \sin \theta(1 +  \tan \theta) +  \cos \theta(1 +  \cot \theta)

 \rm  =  \sin \theta \bigg(1 +   \dfrac{ \sin \theta}{cos \theta}  \bigg)+  \cos \theta \bigg(1 +   \dfrac{cos \theta}{sin \theta} \bigg)

 \rm  =  \sin \theta \bigg(   \dfrac{ cos \theta + \sin \theta}{cos \theta}  \bigg)+  \cos \theta \bigg(  \dfrac{ sin \theta + cos \theta}{sin \theta} \bigg)

 \rm =    \dfrac{ sin \theta(cos \theta + \sin \theta)}{cos \theta}  +   \dfrac{ cos \theta( sin \theta + cos \theta)}{sin \theta}

 \rm =    \dfrac{ sin \theta \big \{sin \theta(cos \theta + \sin \theta) \big \} + cos  \theta \big \{cos \theta( sin \theta + cos \theta) \big \} }{cos \theta.sin \theta}

 \rm =    \dfrac{ {sin }^{2} \theta(cos \theta + {\sin} \theta)  + {cos } ^{2} \theta ( sin \theta + cos \theta) \ }{cos \theta .sin \theta}

 \rm =    \dfrac{ {sin }^{2} \theta.cos \theta + {\sin}  ^{3} \theta  + {cos } ^{2} \theta . sin \theta + cos ^{3}  \theta) \ }{cos \theta .sin \theta}

 \rm =     \dfrac{ {sin}^{3} \theta +  {cos}^{3}  \theta + sin \theta \: cos \theta(sin \theta  +  cos \theta) }{ cos \theta.sin \theta}

 \rm =     \dfrac{ (sin \theta + cos \theta)({sin}^{2}  \theta \: - sin \theta  \: cos \theta+  {cos}^{2}  \theta )+ sin \theta \: cos \theta(sin \theta  +  cos \theta) }{ cos \theta.sin \theta}

 \rm =     \dfrac{ (sin \theta + cos \theta)(1 \: - sin \theta  \: cos \theta )+ sin \theta \: cos \theta(sin \theta  +  cos \theta) }{ cos \theta.sin \theta}

 \rm =     \dfrac{ (sin \theta + cos \theta)(1 \: - sin \theta  \: cos \theta  +  sin \theta \: cos  \theta)}{ cos \theta.sin \theta}

 \rm =     \dfrac{ (sin \theta + cos \theta)(1 )}{ cos \theta.sin \theta}

 \rm =     \dfrac{ sin \theta + cos \theta}{ cos \theta.sin \theta}

 \rm =     \dfrac{ sin \theta }{ cos \theta.sin \theta} +  \dfrac{cos \theta}{cos \theta.sin \theta}

 \rm =     \dfrac{ 1 }{ cos \theta} +  \dfrac{1}{sin \theta}

 \rm =    sec \theta +  tan \theta  =RHS

LHS = RHS

Hence Proved

Similar questions