Math, asked by pooja3323, 1 year ago

plz ans it..........

Attachments:

Answers

Answered by TheGravityBoy2082
2
20. and. 21..........
Attachments:
Answered by parmesanchilliwack
0

Answer: 20) -4√6

21)  7-3√5

Step-by-step explanation:

20) Since, a^2+b^2-5ab = (a-b)^2-3ab

Here,

a=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}

b=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}

\implies ab = \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}\times \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}

\implies ab = \frac{1}{1}=1

Now,

(a-b) = \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}} - \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}

=\frac{(\sqrt{3}-\sqrt{2})^2-(\sqrt{3}+\sqrt{2})^2}{3-2}

=\frac{-4\sqrt{6}}{1}=-4\sqrt{6}

\implies (a-b)^2=96

a^2+b^2-5ab = (a-b)^2-3ab=96-3 = 93

21) p^2+q^2= (p+q)^2-2pq

Here,

p=\frac{3-\sqrt{5}}{3+\sqrt{5}}

q=\frac{3+\sqrt{5}}{3-\sqrt{5}}

\implies p+q=\frac{3-\sqrt{5}}{3+\sqrt{5}}+\frac{3+\sqrt{5}}{3-\sqrt{5}}

=\frac{(3-\sqrt{5})^2+(3+\sqrt{5})^2}{9-5}

=\frac{18+10}{4}

=\frac{28}{4}=7

Also,

pq = \frac{3-\sqrt{5}}{3+\sqrt{5}}\times \frac{3+\sqrt{5}}{3-\sqrt{5}}=1

Hence,

p^2+q^2= (p+q)^2-2pq=49 - 2 = 47

Similar questions