Math, asked by biswakarmasimran01, 4 months ago

plz ans it fast it's very important ​

Attachments:

Answers

Answered by Anonymous
4

Question:-

If Cosecθ = √5, find the value of:-

  • (i) 2 - sin²θ - cos²θ
  • (ii) 2 + \sf \dfrac{1}{sin^{2}\theta}  -  \dfrac{cos^{2}\theta}{sin^{2}\theta}

Solution:-

We have cosecθ = √5

From here we can find the value of sinθ

We know,

\sf{cosec\theta = \dfrac{1}{sin\theta}}

Hence,

We can write

\sf{\dfrac{1}{sin\theta} = \sqrt{5}}

\sf{:\implies sin\theta = \dfrac{1}{\sqrt{5}}}

Now,

Let us find cosθ in terms of sinθ.

We know,

\sf{cos\theta = \sqrt{1 - sin^2\theta}}

Substituting the value of sinθ

= \sf{cos\theta = \sqrt{1 - \bigg(\dfrac{1}{\sqrt{5}}\bigg)^2}}

\sf{:\implies cos\theta = \sqrt{1 - \dfrac{1}{5}}}

\sf{:\implies cos\theta = \sqrt{\dfrac{5 - 1}{5}}}

\sf{:\implies cos\theta = \sqrt{\dfrac{4}{5}}}

\sf{:\implies cos\theta = \dfrac{2}{\sqrt{5}}}

By rationalising the denominator we get,

\sf{:\implies cos\theta = \dfrac{2\sqrt{5}}{\sqrt{5}\times\sqrt{5}}}

\sf{:\implies cos\theta = \dfrac{2\sqrt{5}}{5}}

Now,

(i) 2 - sin²θ - cos²θ

⟶ Let us put the value of cosθ and sinθ.

= \sf{2 - \bigg(\dfrac{1}{\sqrt{5}}\bigg)^2 - \bigg(\dfrac{2\sqrt{5}}{5}\bigg)^2}

\sf{:\implies 2 - \bigg[\dfrac{1}{5} + \dfrac{20}{25}\bigg]}

\sf{:\implies 2 - \bigg[\dfrac{5 + 20}{25}\bigg]}

\sf{:\implies 2 - \bigg[\dfrac{25}{25}\bigg]}

\sf{:\implies 2 - 1}

\sf{:\implies 1}

\sf{\underline{\therefore The\: value\:of\:2 - sin^2\theta - cos^2\theta = 1}}

(ii) 2 + \sf{\dfrac{1}{sin^2\theta} - \dfrac{cos^2\theta}{sin^2\theta}}

= \sf{2 + \bigg[\dfrac{1}{\bigg(\dfrac{1}{\sqrt{5}}\bigg)^2} - \dfrac{\bigg(\dfrac{2\sqrt{5}}{5}\bigg)^2}{\bigg(\dfrac{1}{\sqrt{5}}\bigg)^2}\bigg]}

\sf{:\implies 2 + \bigg[\dfrac{1}{\dfrac{1}{5}} - \dfrac{\dfrac{20}{25}}{\dfrac{1}{5}}\bigg]}

\sf{:\implies 2 + \bigg[5 - \dfrac{20}{25}\times 5\bigg]}

\sf{:\implies 2 + 5 - 4}

\sf{:\implies 7 - 4}

\sf{:\implies 3}

\sf{\underline{\therefore The\:value\:of\: 2 + \dfrac{1}{sin^2\theta} - \dfrac{cos^2\theta}{sin^2\theta}\: is\: 3}}

______________________________________

Similar questions