Math, asked by Anonymous, 10 months ago

Plz ans....


No spam......

Attachments:

Answers

Answered by brainlygirl87
21

 \huge\mathfrak\pink{hlo \: mate}

HEY MATE CAN U PLZGIVE ME SOME SPCL CODES THAT R USEFUL IN BRAINLY.

HOPE U WILL HELP ME

The acceleration of particle is

 \red{a=-2n\quad b2x^{ -4n-1 }}

Given is the value of velocity v as a function x,

 \green{v(x)={ bx }^{ -2n }}

therefore for acceleration to be calculated

 \pink{a=\frac { dv }{ dt } \quad and\quad v=\frac { dx }{ dt }}

thereby,

 \red{ a=(\frac { dv }{ dt } )(\frac { dx }{ dt } )}

 \orange{\Rightarrow a=(\frac { dv }{ dx } )xv.}

 \red{Therefore, \frac { dv }{ dx } =\frac { d(bx^{ -2n }) }{ dx }}

Hence,

 \pink{a=(\frac { dv }{ dx } )xv}

\Rightarrow a=(-2n\quad bx^{ -2n-1 })xv

 \Rightarrow a=(-2n\quad bx^{ -2n-1 })x(bx^{ -2n })

\Rightarrow a=-2n\quad b2x^{ -4n-1 }

Answered by singhadiarmylover
1

Step-by-step explanation:

The acceleration of particle is

\red{a=-2n\quad b2x^{ -4n-1 }}a=−2nb2x

−4n−1

Given is the value of velocity v as a function x,

\green{v(x)={ bx }^{ -2n }}v(x)=bx

−2n

therefore for acceleration to be calculated

\pink{a=\frac { dv }{ dt } \quad and\quad v=\frac { dx }{ dt }}a=

dt

dv

andv=

dt

dx

thereby,

\red{ a=(\frac { dv }{ dt } )(\frac { dx }{ dt } )}a=(

dt

dv

)(

dt

dx

)

\orange{\Rightarrow a=(\frac { dv }{ dx } )xv.}⇒a=(

dx

dv

)xv.

\red{Therefore, \frac { dv }{ dx } =\frac { d(bx^{ -2n }) }{ dx }}Therefore,

dx

dv

=

dx

d(bx

−2n

)

Hence,

\pink{a=(\frac { dv }{ dx } )xv}a=(

dx

dv

)xv

\Rightarrow a=(-2n\quad bx^{ -2n-1 })xv⇒a=(−2nbx

−2n−1

)xv

\Rightarrow a=(-2n\quad bx^{ -2n-1 })x(bx^{ -2n })⇒a=(−2nbx

−2n−1

)x(bx

−2n

)

\Rightarrow a=-2n\quad b2x^{ -4n-1 }⇒a=−2nb2x

−4n−1

Similar questions