Math, asked by aishasanghvi, 1 year ago

plz ans second part fast

Attachments:

Answers

Answered by VemugantiRahul
2
Hi there!
Here's the answer :

•°•°•°•°•°<><><<><>><><>°•°•°•°•°

tan^{-1}\: (\frac{1}{4})+ tan^{-1}\: (\frac{2}{9})= \frac{1}{2} Cos^{-1}\: (\frac{3}{5})= \frac{1}{2}\: sin^{-1}\: (\frac{4}{5})

LHS=

tan^{-1}\: (\frac{1}{4})+ tan^{-1}\: (\frac{2}{9})

Using the Formula,
tan (A + B) = \frac{tanA + tanB}{1-tanAtanB}

=> tan^{-1}\: A + tan^{-1}\: B = tan^{-1}\: \frac{A+B}{1-AB}

tan^{-1}\: (\dfrac{\frac{1}{4}+\frac{2}{9}}{1-(\frac{1}{4}×\frac{2}{9})})

tan^{-1}\: (\dfrac{\frac{17}{36}}{\frac{34}{36}})

tan^{-1}\: (\frac{17}{34})

tan^{-1}\: (\frac{1}{2})

Multiply and Divide with 2

\frac{2}{2} × tan^{-1}\: (\frac{1}{2})

\frac{1}{2} × 2tan^{-1}\: (\frac{1}{2})

Using the Formula
2tan^{-1}\: x = cos^{-1}\: (\dfrac{1-\frac{x}{2}}{1+\frac{x}{2}})

\dfrac{1}{2} × cos^{-1}\: (\dfrac{1-\frac{1}{4}}{1+\frac{1}{4}})

\dfrac{1}{2} × cos^{-1}\: (\dfrac{3}{5})

3,4&5 are Pythagorean triplets
°•° 5² = 3² + 4², according to Pythagoras theorem

Cos = \frac{Adjacent}{Hypotenuse}

Sin = \frac{Opposite}{Hypotenuse}

Here,
Adj = 3, Hyp = 5
So Opp = 4

•°•

\dfrac{1}{2}× sin^{-1}\: (\dfrac{4}{5})

=RHS

Hence Proved.

•°•°•°•°•°<><><<><>><><>°•°•°•°•°

...
Similar questions