Math, asked by darkgenius2006, 1 year ago

Plz ans the que in attachment

Class X, Introduction to Trigonometry

Attachments:

Answers

Answered by Anonymous
3
 \textsf{\underline {\Large {TRIGONOMETRY}}} :

( iii ). For  \mathsf{\dfrac{x} {a} cosA \:+\:{\dfrac{y} {b} sinA\:=1}}

Squaring both sides,

 \mathsf[{\dfrac{x}{a} cosA}\:+\:{\mathsf{\dfrac{y} {b} sinA]} ^{2} \:=\:{1}^{2}}

 \mathsf{\dfrac{{x}^{2}} {{a}^{2}} {cos}^{2}A\:+\:{\dfrac{{y} ^{2}} {{b}^{2}}<br />{sin}^{2}A\:+\:{\dfrac{2xy \:cos A sinA} {ab} \:=1}}} --> ( i )

Similarly, For  \mathsf{\dfrac{x} {a} sinA\:-\:{\dfrac{y} {b} cosA\:=\:=1}}

Squaring both sides,

 \mathsf[{\dfrac{x}{a} cosA}\:-\:{\mathsf{\dfrac{y} {b} sinA]} ^{2} \:=\:{1}^{2}}

 \mathsf{\dfrac{{x}^{2} }{{a}^{2}} {sin}^{2}A\:+\:{\dfrac{{y}^{2}}{{b}^{2}} {cos}^{2}A\:-\:{\dfrac{2xy \:cos A sinA} {ab} \:=1}}} --> ( ii )

Now, Adding ( i ) and ( ii ),

 \mathsf{\dfrac{{x}^{2}}{{a}^{2}} ({sin}^{2}A\:+\:{cos} ^{2}A) \:+\:{\dfrac{{y}^{2}}{{b}^{2}}( {cos}^{2}A\:+\:{sin} ^{2}A)\:= \:1\:+1\:}}

We know that,

\boxed{\mathsf{{sin} ^{2}A \:+\:{cos} ^{2}A\:=\:1}}

➡️ \boxed{ \mathsf{\dfrac{{x}^{2}}{{a}^{2}} \:+\:{\dfrac{{y}^{2}}{{b}^{2}}\:=\:2}}}

 \tt{\large{Hence, Proved.}}

Anonymous: Done!
darkgenius2006: thanks alot.. genius
Similar questions