Math, asked by Shanaya1220, 1 month ago

plz ans the question is attached​

Attachments:

Answers

Answered by ItzBrainlyLords
27

☞︎︎︎ Solution :

 \:

★ Given :

 \:

 \large  \:  \:  \:  \: \rm \rightarrow \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  = 51

 \:

On Solving -

 \:

  • Identity

➪ (a - b)² = a² + b² - 2ab

 \:

 \large \rm   \: : ⇒ {\left( {x -  \dfrac{1}{ {x}^{} } }^{}  \right) }^{2} =  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  - 2 \times x \times   \dfrac{1}{x}

 \:

 \large \rm   \: : ⇒ {\left( {x -  \dfrac{1}{ {x}^{} } }^{}  \right)  }^{2} =  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  - 2 \times  \cancel{x} \times   \dfrac{1}{ \cancel{x}}

 \:

 \large \rm   \: : ⇒ {\left( {x -  \dfrac{1}{ {x}^{2} } }^{}  \right)}^{2}  =  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  - 2

 \:

 \large  \:  \:  \:  \: \rm \rightarrow \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  = 51

 \:

 \large \rm   \: : ⇒ {\left( {x -  \dfrac{1}{ {x}^{} } }^{}  \right)  }^{2} =  51  - 2

 \:

 \large \rm   \: : ⇒{ \left( {x -  \dfrac{1}{ {x}^{} } }^{}  \right) }^{2}  =  49

 \:

 \large \rm   \: : ⇒{ \left( {x -  \dfrac{1}{ {x}^{} } }^{}  \right) }^{}  =   \sqrt{ 49}

 \:

 \large \rm   \: : ⇒{ \left( {x -  \dfrac{1}{ {x}^{} } }^{}  \right) }^{}  =   7

 \:

  • On cubicing both sides -

 \:

  \:  \:  \:  \:  \:  \:  \: \large \rm   \: : ⇒{ \left( {x -  \dfrac{1}{ {x}^{} } }^{}  \right) }^{3}  =   {(7) }^{3}

 \:

☆ Using Identity :

→ a³ - b³ = a³ - b³ - 3(a + b)

 \:

 \large \rm   : ⇒ \: {{{x }^{3}  -  \dfrac{1}{ {x}^{3} } }^{}  } - 3 \left(x -  \dfrac{1}{x}  \right)  =   343

 \:

 \large \rm   : ⇒ \: {{{x }^{3}  -  \dfrac{1}{ {x}^{3} } }^{}  } - 3(7)  =   343

 \:

 \large \rm   : ⇒ \: {{{x }^{3}  -  \dfrac{1}{ {x}^{3} } }^{}  } - 21=   343

 \:

  • On Transposing The Terms :

 \:

 \large \rm   : ⇒ \: {{{x }^{3}  -  \dfrac{1}{ {x}^{3} } }^{}  } =   343 + 21

 \:

 \:  \:  \:  \boxed{ \large \rm    \therefore \:  \: {{{x }^{3}  -  \dfrac{1}{ {x}^{3} } }^{}  } =   364}

Similar questions