Math, asked by UBrock, 1 month ago

plz ans this 11th ncert sequence and series question​

Attachments:

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:a_1,a_2,a_3, -  -  - ,a_{n - 1},a_n \: are \: in \: AP

\bf\implies \:a_1 + a_n = a_2 + a_{n - 1} = a_3 + a_{n - 2} =  -  -  -

Further given that,

\rm :\longmapsto\:\dfrac{1}{a_1a_n}  + \dfrac{1}{a_2a_{n - 1}}  + \dfrac{1}{a_3a_{n - 2}}  +  -  -  + \dfrac{1}{a_na_1}  \\  \rm \:  =  \lambda \: \bigg[\dfrac{1}{a_1}  + \dfrac{1}{a_2}  + \dfrac{1}{a_3}  +  -  -  - +\dfrac{1}{a_{n - 1}}  +  \dfrac{1}{a_n}  \bigg]

Now, Consider,

\rm :\longmapsto\:\dfrac{1}{a_1a_n}  + \dfrac{1}{a_2a_{n - 1}}  + \dfrac{1}{a_3a_{n - 2}}  +  -  -  + \dfrac{1}{a_na_1}

Can be rewritten as

\rm  = \:\dfrac{1}{a_1 + a_n} \bigg[\dfrac{a_1 + a_n}{a_1a_n}  + \dfrac{a_1 + a_n}{a_2a_{n - 1}}  + \dfrac{a_1 + a_n}{a_3a_{n - 2}}  +  -  -  + \dfrac{a_1 + a_n}{a_na_1}\bigg]

\rm  = \:\dfrac{1}{a_1 + a_n} \bigg[\dfrac{a_1 + a_n}{a_1a_n}  + \dfrac{a_2 + a_{n - 1}}{a_2a_{n - 1}}  + \dfrac{a_3 + a_{n - 2}}{a_3a_{n - 2}}  +  -  -  + \dfrac{a_n + a_1}{a_na_1}\bigg]

can be further rewritten as

\rm=\dfrac{1}{a_1 + a_n}\bigg[\dfrac{1}{a_1}  + \dfrac{1}{a_n}  + \dfrac{1}{a_2}  + \dfrac{1}{a_{n - 1}}  +  -  -  -  + \dfrac{1}{a_1}  + \dfrac{1}{a_n} \bigg]

\rm=\dfrac{2}{a_1 + a_n}\bigg[\dfrac{1}{a_1}  + \dfrac{1}{a_2}  + \dfrac{1}{a_3}  +  -  -  -  + \dfrac{1}{a_{n - 1}}  + \dfrac{1}{a_n} \bigg]

Now, as it is given that,

 \red{\rm :\longmapsto\:\dfrac{1}{a_1a_n}  + \dfrac{1}{a_2a_{n - 1}}  + \dfrac{1}{a_3a_{n - 2}}  +  -  -  + \dfrac{1}{a_na_1}}  \\  \rm \:  =  \red{ \lambda \: \bigg[\dfrac{1}{a_1}  + \dfrac{1}{a_2}  + \dfrac{1}{a_3}  +  -  -  - +\dfrac{1}{a_{n - 1}}  +  \dfrac{1}{a_n}  \bigg]}

So, we concluded that,

 \red{\bf\implies \:\boxed{ \rm{ \:  \lambda \:  =  \: \dfrac{2}{a_1 + a_n} \:  \: }}}

Hence, Option (4) is correct.

Similar questions