Math, asked by urvshi1203, 1 year ago

plz ans this also....tomorrow is my exam

Attachments:

Answers

Answered by AwesomeArya
4
Hey user

Here is your answer :-

________________________________

 \sqrt{3 - 2 \sqrt{2} } \\ \\ let \: \sqrt{3 - 2 \sqrt{2} } = \sqrt{x} - \sqrt{y} \\ \\ squaring \: on \: the \: both \: sides \: \\ \\ ({ \sqrt{3 - 2 \sqrt{2} } )}^{2} = { (\sqrt{x} - \sqrt{y} )}^{2} \\ \\ 3 - 2 \sqrt{2} = x + y - 2 \sqrt{xy} \\ \\ x + y = 3 \\ \\ - 2 \sqrt{xy} = - 2 \sqrt{2} \\ \\ \sqrt{xy} = \sqrt{2} \\ \\ xy = 2 \\ \\ x = 2 \: \: \: \: \: and \: \: \: \: \: \: y = 1 \\ \\ hence \\ \\ \sqrt{3 - 2 \sqrt{2} } = \sqrt{2} - \sqrt{1} \\ \\ =  \sqrt{2} - 1

Anshul28104: siso urvshi ko to ye bhi ni ata haha simplify itna eassy OMG
urvshi1203: agr itna hi h karde solve
Anshul28104: kiya he phle bi
urvshi1203: f9 mai kya kru
Anshul28104: tune meko galiya de
Anshul28104: kyu di bo meko me kya kitya tha
urvshi1203: maine nahi parth ne di
Answered by nitish8089
1
 \sqrt{2 + 1 - 2 \sqrt{2} }
 \sqrt{( \sqrt{2}) { }^{2} - 2 \sqrt{2} + (1) ^{2} }
 \sqrt{( \sqrt{2} - 1) {}^{2} }
therefore;
 \sqrt{2} - 1
using formulae
(a - b) ^{2}
both answer is correct:

Anshul28104: badkya tu kmal aa
nitish8089: thank you
Similar questions