Physics, asked by mrsyousuf2003, 10 months ago

plz ans this asap class 11 physics

Attachments:

Answers

Answered by piasha63
1

Answer:

if right then may help u mate....

Attachments:
Answered by Rohit18Bhadauria
2

Given:

\rm{\vec{A}=3\hat{i}-4\hat{j}+5\hat{k}}

\rm{\vec{B}=2\hat{i}+3\hat{j}-4\hat{k}}

To Find:

A unit vector parallel to \rm{\vec{A}+\vec{B}}

Solution:

We know that,

  • A unit vector parallel to given vector \rm{\vec{R}} is given by

\pink{\boxed{\rm{\hat{R}=\dfrac{\vec{R}}{\mid\vec{R}\mid}}}}

where

\rm{\mid\vec{R}\mid} is the magnitude of vector \rm{\vec{R}}

  • Magnitude of given vector \rm{\vec{R}=x\hat{i}+y\hat{j}+z\hat{k}} is given by

\purple{\boxed{\rm{\mid\vec{R}\mid=\sqrt{(x)^{2}+(y)^{2}+(z)^{2}}}}}

\rule{190}{1}

Let \rm{\vec{P}=\vec{A}+\vec{B}}

So,

\longrightarrow\rm{\vec{P}=3\hat{i}-4\hat{j}+5\hat{k}+2\hat{i}+3\hat{j}-4\hat{k}}

\longrightarrow\rm{\vec{P}=(3+2)\hat{i}+(-4+3)\hat{j}+(5-4)\hat{k}}

\longrightarrow\rm{\vec{P}=(5)\hat{i}+(-1)\hat{j}+(1)\hat{k}}

\longrightarrow\rm{\vec{P}=5\hat{i}-\hat{j}+\hat{k}}

\rule{190}{1}

Now, we have to find unit vector parallel to \rm{\vec{P}}

Let the unit vector in the direction of \rm{\vec{P}} be \rm{\hat{P}}

So,

\longrightarrow\rm{\hat{P}=\dfrac{\vec{P}}{\mid\vec{P}\mid}}

\longrightarrow\rm{\hat{P}=\dfrac{5\hat{i}-\hat{j}+\hat{k}}{\sqrt{(5)^{2}+(-1)^{2}+(1)^{2}}}}

\longrightarrow\rm{\hat{P}=\dfrac{5\hat{i}-\hat{j}+\hat{k}}{\sqrt{25+1+1}}}

\longrightarrow\rm{\hat{P}=\dfrac{5\hat{i}-\hat{j}+\hat{k}}{\sqrt{27}}}

\longrightarrow\rm\green{\hat{P}=\dfrac{5}{\sqrt{27}}\hat{i}-\dfrac{1}{\sqrt{27}}\hat{j}+\dfrac{1}{\sqrt{27}}\hat{k}}

Hence, \rm{\hat{P}} is the required unit vector parallel to \rm{\vec{A}+\vec{B}}.

Similar questions