Plz. ... ANS THIS I LL DO ANY FAVOUR 4 U.........
If p,q r real and p is not = q then show that THE roots of the equation
(P-q)x2 + 5(p+q)x + 2(p-q)=0
R REAL and UNEQUAL
Answers
Answered by
2
Hi.
Compare (p - q)x²+5(p+ q )x+2(p-q)=0
with ax² + bx + c = 0 ,
a = p - q ,
b = 5( p + q ) ,
c = 2( p - q )
If roots real and unequal then
discreaminant > 0
b² - 4ac > 0
5( p + q )² - 4( p - q )× 2( p - q ) > 0
5( p + q )² - 8( p - q )² > 0
5p² + 10pq + 5q² - 8p² + 16pq - 8q²>0
-3p² - 3q² + 26pq >0
3p² + 3q² - 26pq < 0
I hope this helps you.
: )
Compare (p - q)x²+5(p+ q )x+2(p-q)=0
with ax² + bx + c = 0 ,
a = p - q ,
b = 5( p + q ) ,
c = 2( p - q )
If roots real and unequal then
discreaminant > 0
b² - 4ac > 0
5( p + q )² - 4( p - q )× 2( p - q ) > 0
5( p + q )² - 8( p - q )² > 0
5p² + 10pq + 5q² - 8p² + 16pq - 8q²>0
-3p² - 3q² + 26pq >0
3p² + 3q² - 26pq < 0
I hope this helps you.
: )
Similar questions