Math, asked by millybhatia, 1 year ago

Plz ans this ques urgently..... This is vry imp..... Plz Plz Solve it

Attachments:

Answers

Answered by TRISHNADEVI
7
✍HERE IS YOUR SOLUTION...⤵⤵
=====================================

\underline{SOLUTION}

\underline{Given : }\: \sec {}^{2} \theta = 1 + \tan{}^{2} \theta

Now,

L.H.S.= \frac{ \sin \theta - \cos \: \theta + 1 }{ \sin \: \theta + \cos \theta - 1} \\ \\ = \frac{ \tan\theta - 1 + sec \: \theta}{tan \: \theta + 1 - \sec\theta} \\ \\ = \frac{(tan \: \theta + sec \:\theta) - 1 }{(tan \: \theta - sec \:\theta) + 1 } \\ \\ = \frac{[(tan \: \theta + sec \:\theta) - 1](tan \: \theta \: - sec \: \theta)}{[(tan \: \theta - sec \:\theta) + 1 ](tan \: \theta \: - sec \: \theta)} \\ \\ = \frac{( \tan {}^{2} \theta - \sec{}^{2}\theta) - ( \tan \theta - sec \: \theta) }{[(tan \: \theta - sec \:\theta) + 1 ](tan \: \theta \: - sec \: \theta)} \\ \\ = \frac{(tan {}^{2} \: \theta - 1 - tan {}^{2}\theta) - ( \tan \theta - sec \: \theta) }{[(tan \: \theta - sec \:\theta) + 1 ](tan \: \theta \: - sec \: \theta)} \\ \\ = \frac{ - 1 - tan \:\theta + sec \: \theta }{(tan \: \theta - sec \:\theta + 1 )(tan \: \theta \: - sec \: \theta)} \\ \\ = \frac{ - 1(1 + tan \: \theta \: - sec \: \theta)}{(1 + tan \: \theta - sec \:\theta)(tan \: \theta \: - sec \: \theta)} \\ \\ = \frac{ - 1}{tan \: \theta - sec \: \theta} \\ \\ = \frac{1}{sec \: \theta - tan \: \theta} \\ \\ = R.H.S.

 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: Hence \: \: Proved \: .

___________________________________

✝✝…HOPE…IT…HELPS…YOU…✝✝

silu12: hii
silu12: u r in 12th or 11th?
TRISHNADEVI: 11th
Similar questions