Math, asked by saladass1249, 1 year ago

plz ans this question​

Attachments:

Answers

Answered by Anonymous
0

Given \:  \: Question \:  \: Is \:  \\  \\  log_{2}(x) \times   log_{2}( \frac{x}{16} )  =  log_{2}( \frac{x}{64} )  \\  find \:  \: x \\  \\ Answer \:  \\  \\  log_{2}(x )(   log_{2}(x) -  log_{2}(2 {}^{4} )  ) =   log_{2}(x) -  log_{2}(2 {}^{6} )    \\ becoz \:  \:  log( \frac{m}{n} )   =  log(m)  -  log(n)  \\  \\  log_{2}(x) ( log_{2}(x)  - 4 log_{2}(2) ) =  log_{2}(x)  - 6 log_{2}(2)  \\ becoz \:  \:  log(x {}^{n} )  = n log(x)  \\  \\  log_{2}(x) ( log_{2}(x)  - 4) =   log_{2}(x)  - 6\\ becoz \:  \:  log_{x}(x)  = 1 \\  \\  (log_{2}(x) ) {}^{2}  - 4 log_{2}(x)  -  log_{2}(x)  + 6= 0 \\  \\ ( log_{2}(x) ) {}^{2}  - 5 log_{2}(x)  + 6= 0 \\  \\ put \:  \:  log_{2}(x)  = z \\  \\ z {}^{2}  - 5z + 6= 0 \\  \\ z {}^{2}  - 3z - 2z + 6 = 0 \\  \\ z(z - 3) - 2(z - 3) = 0 \\  \\ (z - 2) = 0 \:  \:  \:  \: or \:  \:  \: (z - 3) = 0 \\  \\ z = 2 \:  \:  \:  \: or \:  \:  \: z = 3 \\  \\  log_{2}(x) =  2 \:  \:  \: or \:  \:  \:  log_{2}(x)  = 3 \\  \\ x = 2 {}^{2}  \:  \:  \: or \:  \:  \:  \:x = 2 {}^{3}  \\ becoz \:  \:  \: IF \: log_{x}(y)  = a \:  \:  \: then \:  \:  \: y = x {}^{a}  \\  \\ therefore \:  \:  \: x = 4 \:  \:  \: or \:  \:  \: x = 8

Similar questions