Math, asked by ritik193, 1 year ago

plz anser it fast .. with solution

Attachments:

Answers

Answered by Yuichiro13
1
Heya

We use :
 {6}^{m}  \times  {6}^{n}  =  {6}^{(m + n)}

And hence,

 {6}^{ \frac{1}{2} }  \times  {6}^{ \frac{2}{4} }  \times  {6}^{ \frac{3}{8} }  \times ...

 =  {6}^{ \frac{1}{2} +  \frac{2}{4} +  \frac{3}{8}  +  \frac{4}{16} + ...   }
Hence, the sum of indices show an infinite AGP

Using a = ( 1 / 2 ) ; r = ( 1 / 2 ) ; d = ( 1 / 2 )

The sum equals :
 \frac{a}{1 - r}  +  \frac{dr}{( {1 - r})^{2} }  = 1 + 1 = 2

And hence, the product equals
{6}^{ \frac{1}{2} }  \times  {6}^{ \frac{2}{4} }  \times  {6}^{ \frac{3}{8} }  \times ... = {6}^{2}  = 36

Hope this helps ^_^

Anonymous: Thanks for the answer! ^^
Yuichiro13: Oyee Pikaachu
Anonymous: Unblock =_=
Similar questions