Math, asked by Anonymous, 9 months ago

plz ansr this correctly with steps and explanation​

Attachments:

Answers

Answered by amankumaraman11
1

We have,

  • To find the value of qp

Here,

  •   \rm {p}^{ \tiny{q}}  = 64, where p & q are positive integers.

So,

  • We need to transform RHS in form of   \rm {p}^{ \tiny{q}} ,

Therefore,

  • Solving it further, we get,

 \huge \sf {p}^{q}  = 64 \\     \\  \sf \large =  > {p}^{q}   \: =  { {8}^{2} }   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ... (1)\\  \large=  > \sf{p}^{q}   \: =   { {2}^{6} }    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ...(2)\\

From Equation 1 & 2, We have

 \tt{p = 8 \:  \:  \: or \:  \:  \: 2} \\  \tt q = 2 \:  \:  \: or \:  \:  \: 6

Since, p & q can only be positive integers.

Hence,

 \huge \rm{qp =2 \times 8 = 16 }

Or,

 \huge \rm{qp = 6 \times 2 = 12}

Answered by ItzAryananda
6

Answer:

kannur il ano veedhu........

٩(♡ε♡ )۶

Similar questions