plz answer and tell me!
Answers
Answer:
x = (2nπ ± 2 π / 3 )
Step-by-step explanation:
Given--->
-----------
3 Cosx + 2 Sin² x = 0
To find--->
------------
Value of x
Solution--->
--------------
3 Cos x + 2 Sin² x = 0
=> 2 Sin² x + 3 Cosx = 0
We have a formula
Sin² x + Cos² x = 1
Sin² x = 1 - Cos² x
Applying it here
=> 2 ( 1 - Cos² x ) + 3 Cos x = 0
=> 2 - 2 Cos² x + 3 Cos x = 0
=> - 2 Cos²x + 3 Cos x + 2 = 0
=> 2 Cos² x - 3 Cos x - 2 = 0
=> 2 Cos² x - ( 4 - 1 ) Cosx - 2 = 0
=> 2 Cos² x - ( 4 Cosx - Cos x ) - 2 = 0
=> 2 Cos² x - 4Cosx + Cosx - 2 = 0
=> 2Cosx ( Cosx - 2 ) +1(Cosx - 2 )= 0
=> ( Cosx - 2 ) ( 2 Cosx + 1 ) = 0
If Cosx - 2 = 0
Cos x = 2 > 1 ( impossible)
Because maximum value of Cosx is 1
If 2 Cosx + 1 = 0
=> 2 Cosx = - 1
=> Cosx = - 1 / 2
=> Cosx = Cos (2 π/3)
=> Cosx = Cos ( 2nπ ± 2 π / 3 )
=> x = 2nπ ± ( 2π / 3)