Math, asked by mkj54, 1 year ago

plz answer both the questions.....​

Attachments:

Answers

Answered by Anonymous
12

\huge\bigstar\mathfrak\blue{\underline{\underline{SOLUTION:}}}

Let f(x)= 3x^2 +8x+(2k+1)

 \alpha  \: and \: beta \: \: be \: its \: zeroes \\

Here, a= 3

b= 8

c= 2k+1

Given,

 \alpha  = 7 \beta .......(1) \\   =  > sum \: of \: the \: roots \:  \alpha  +  \beta  =  -  \frac{b}{a}  \\  \\  =  > 7 \beta  +  \beta  =    - \frac{8}{3}  \:  \: (using \: (1)) \\  \\  =  > 8 \beta  =  -  \frac{8}{3}  \\  \\  =  >  \beta  =   - \frac{1}{3}

Putting Beta= -1/3 in (1), we have

 \alpha  = 7 \times   - \frac{1}{3} =   - \frac{7}{3}   \\  \\ so \: the \: zeroes \: are \:  \alpha  =    - \frac{7}{3}  \: and \:  \beta  =  -  \frac{1}{3}

Now,

Product of roots,

 -  \frac{1}{3}  \times  -  \frac{7}{3}  \\  \\  =  >  \frac{c}{a}  =  \frac{7}{9}  \\  \\  =  >  \frac{(2k + 1)}{3}  =  \frac{7}{9}  \\  \\  =  > 2k + 1 =  \frac{7}{3}  \\  \\  =  > 6k + 3 = 7 \\  =  > 6k = 7 - 3 \\  =  > 6k = 4 \\  =  > k =  \frac{4}{6}    =  \frac{2}{3} \\  \\  =  > k =  \frac{2}{3}

So, the value of k = 2/3

hope it helps ☺️

Attachments:
Similar questions