Math, asked by harshraj555555, 2 months ago

plz answer correctly​

Attachments:

Answers

Answered by Ladylaurel
23

Question :

Find the value of x in

\sf{\dfrac{x}{\sqrt{72}} = \dfrac{\sqrt{288}}{x}}

 \\

Answer :-

  • The value of x is ±12.

 \\

To Find :-

  • The value of x

 \\

Solution:

\sf{ \longrightarrow \: \dfrac{x}{\sqrt{72}} = \dfrac{\sqrt{288}}{x}}

By cross-multiplication,

 \\

\sf{ \longrightarrow \:  x \times x =  \sqrt{288} \times  \sqrt{72}}

By simplifying,

 \\

\sf{ \longrightarrow \: {x}^{2}  =  \sqrt{288} \times  \sqrt{72}}

\sf{ \longrightarrow \: {x}^{2}  =  \sqrt{288 \times 72}}

\sf{ \longrightarrow \: {x}^{2}  =  \sqrt{20736}}

\sf{ \longrightarrow \: {x}^{2}  =  \sqrt{144 \times 144}}

\sf{ \longrightarrow \: {x}^{2} = 144}

\sf{ \longrightarrow \: {x}^{2} = 12 \times 12}

\longrightarrow \:  \sf{x = \pm \: 12} \:  \:  \:  \:  \:  \bigstar

 \\

Hence, The value of x is ±12.

 \\  \\

V E R I F I C A T I O N :-

  • \sf{ \dfrac{x}{\sqrt{72}} = \dfrac{\sqrt{288}}{x}}

By putting the value of x,

\sf{ \longrightarrow \: \dfrac{12}{\sqrt{72}} = \dfrac{\sqrt{288}}{12}}

By cross-multiplication,

 \\

\sf{ \longrightarrow \:  12 \times 12 =  \sqrt{288} \times  \sqrt{72}}

 \\

\sf{ \longrightarrow \:  144 = \sqrt{288 \times 72}}

 \\

\sf{ \longrightarrow \: 144 = 144}

L.H.S = R.H.S

Hence, Verified!

Similar questions