Math, asked by salimatamboli8810, 6 months ago

plz answer fast.........​

Attachments:

Answers

Answered by Uriyella
16

Given :

  • An equation,  \bf \sqrt{ \dfrac{1 +  cos \:  \theta }{1 - cos  \: \theta} }  = cosec \:  \theta + cot \:  \theta

To Prove :

  • The given equation, \bf \sqrt{ \dfrac{1 +  cos \:  \theta }{1 - cos  \: \theta} }  = cosec \:  \theta + cot \:  \theta

Proof :

Given equation,

\bf \sqrt{ \dfrac{1 +  cos \:  \theta }{1 - cos  \: \theta} }  = cosec \:  \theta + cot \:  \theta

Solve the equation of L.H.S. (Left hand side),

\bf \implies \: L.H.S. =   \sqrt{ \dfrac{1 + cos  \: \theta}{1 - cos  \: \theta} }  \\  \\  \\ \bf \implies  \sqrt{ \dfrac{1 + cos \:  \theta}{1 - cos \:  \theta}  \times  \dfrac{1 + cos \:  \theta}{1 + cos \:  \theta} }  \\

Using identity,

• (a - b) (a + b) = a² - b²

\bf \implies  \sqrt{ \dfrac{ {(1 + cos \:  \theta)}^{2} }{ {(1)}^{2} -  {(cos \:  \theta)}^{2}  } }  \\  \\  \\ \bf \implies  \sqrt{ \dfrac{{(1 + cos \:  \theta)}^{2} }{1 -  {cos}^{2} \:  \theta} }

We know that,

 \bullet \:  \:  \:  \bf{1 - {cos}^{2} \:   \theta}  =  {sin}^{2}  \:  \theta

\bf \implies \sqrt{\dfrac{ {(1 + cos \:  \theta)}^{2} }{ {sin}^{2} \:  \theta} }  \\  \\  \\ \bf \implies  \frac{1 + cos \:  \theta}{sin \:  \theta}  \\  \\  \\ \bf \implies  \dfrac{1}{sin \:  \theta}  +  \dfrac{cos \:  \theta}{sin \:  \theta}  \\

We know that,

 \bullet \:  \:  \: \bf  \dfrac{1}{sin \:  \theta}  = cosec \:  \theta \\  \\  \\  \bullet \:  \:  \:  \bf \dfrac{cos \:  \theta}{sin \:  \theta}  = cot \:  \theta

So,

\bf \implies cosec \:  \theta + cot \:  \theta \\  \\  \bf\bf \implies  \:  R.H.S.

Hence Proved !

Answered by Anonymous
23

Given:-

  • \sf\ \sqrt{\dfrac{1+cos θ}{1-cosθ}} = cosecθ+cotθ

To Find:-

  • An equation,

\sf\ \sqrt{\dfrac{1+cos θ}{1-cosθ}} =cosecθ+cotθ

Solution:-

\sf\ LHS :- \sqrt{\dfrac{1+cos θ}{1-cosθ}} =cosecθ+cotθ

\sf\ Multiplying\: numerator\: and \: denominator

\sf\ with\:1+cosθ\: we\: get

\Longrightarrow\: \sf\ \sqrt{\dfrac{1+cos θ}{1-cosθ} × \dfrac{1+cosθ}{1+cosθ}}

\Longrightarrow\: \sf\ \sqrt{ \dfrac{(1+cos θ)^2} {1-cos^2θ} }

\Longrightarrow\: \sf\ \dfrac{1+cos θ}{sinθ}

\Longrightarrow\: \sf\ \dfrac{1}{sinθ} + \dfrac{cosθ}{sinθ}

\Longrightarrow\: \sf\ cosecθ + cotθ

\Longrightarrow\: \sf\ RHS

Hence proved!

Similar questions