Math, asked by brainlystar7364, 4 months ago

plz answer fast...(+_+)​

Attachments:

Answers

Answered by kavitasingh1234
15

Answer:

The correct Answer is:-

option ( A)

Answer 1

Attachments:

brainlystar7364: Thank you so much
kavitasingh1234: your most welcome
CloseEncounter: good answer
kavitasingh1234: tq
Answered by CloseEncounter
20

\sf{If  \: N =  \frac{ \sqrt{ \sqrt{5}+2 } + \sqrt{ \sqrt{5}-2 } }{ \sqrt{ \sqrt{5} + 1 }  } - \sqrt{3  -  2 \sqrt{2} }}

\sf{then\: N\: = }

\sf(a) = 1 \:  \:  \:  \:  \:  \:  \:  \:  \: (b) = 2 \sqrt{2}  - 1 \\ \sf(c) =  \frac{ \sqrt{5} }{2}  \:  \:  \:  \:  \:  \:  \:  \:  \: (d) =  \frac{2}{ \sqrt{ \sqrt{5} + 1 } }

\sf{Answer\: = \bold{1}}

Step by step explanation:-

\sf{\Rightarrow  \frac{ \sqrt{ \sqrt{5}+2 } + \sqrt{ \sqrt{5}-2 } }{ \sqrt{ \sqrt{5} + 1 }  } -\sqrt{3  -  2 \sqrt{2} }}

\sf{let \Rightarrow \frac{ \sqrt{ \sqrt{5}+2 } + \sqrt{ \sqrt{5}-2 } }{ \sqrt{ \sqrt{5} + 1 }  } \:  \:  \:  \:  be \:  \: (i)}

\sf{and \Rightarrow  \sqrt{3 - 2 \sqrt{2} }   \:  \:  \:  \:  \:  \:  be \:  \:  \:  \:  \: (ii)}

solving equation (i)

\sf{\Rightarrow \frac{ \sqrt{ \sqrt{5}+2 } + \sqrt{ \sqrt{5}-2 } }{ \sqrt{ \sqrt{5} + 1 }  }}

Rational the denominator term

\sf{\Rightarrow \frac{ \sqrt{ \sqrt{5}+2 } + \sqrt{ \sqrt{5}-2 } }{ \sqrt{ \sqrt{5} + 1 }  } \times  \frac{ \sqrt{ \sqrt{5}   -  1} }{ \sqrt{ \sqrt{5}  - 1} } }

\sf{\Rightarrow \frac{ (\sqrt{ \sqrt{5} + 2 })( \sqrt{ \sqrt{5} - 1 }) + ( \sqrt{ \sqrt{5} - 2 })( \sqrt{ \sqrt{5}  - 1)}    }{ \sqrt{ ( \sqrt{5})^{2} -  {(1)}^{2}   }  }}

\sf{\Rightarrow \frac{ \sqrt{5 -  \sqrt{5} + 2 \sqrt{5}  - 2 } + \sqrt{5 -  \sqrt{5} - 2 \sqrt{5} + 2  }    }{\sqrt{5 - 1}   }}

\sf{\Rightarrow \frac{ \sqrt{5  +   \sqrt{5}  - 2 } + \sqrt{5  - 3\sqrt{5} + 2  }    }{\sqrt{4}   }}

\sf{\Rightarrow \frac{ \sqrt{3  +   \sqrt{5}   } + \sqrt{7 - 3\sqrt{5}  }    }{\cancel{\sqrt{ {2}^{\cancel2} }}   }}

\sf{\Rightarrow \frac{ \sqrt{(3  +  \sqrt{5} )^{ \frac{2}{2} }  } + \sqrt{(7  - 3\sqrt{5})^{ \frac{2}{2} }  }    }{2}}

\sf{\Rightarrow \frac{ \sqrt{ 6  +   2\sqrt{5}   } + \sqrt{14-  6 \sqrt{5}  }    }{{2\sqrt{ {2} }}   }}

\sf{\Rightarrow \frac{ \sqrt{ 1 + 5  +   2\sqrt{5}   } + \sqrt{9 + 5-  6 \sqrt{5}  }    }{{2\sqrt{ {2} }}   }}

\sf{\Rightarrow \frac{ \sqrt{ (1 +   \sqrt{5})^{2}     } + \sqrt{(3 -  \sqrt{5})^{2}  }    }{{2\sqrt{ {2} }}   }}

\sf{\Rightarrow \frac{\cancel{ \sqrt{ (1 +   \sqrt{5})^{\cancel2} }    } + \cancel{\sqrt{(3 -  \sqrt{5})^{\cancel2}  }}    }{{2\sqrt{ {2} }}   }}

\sf{\Rightarrow \: \frac{1 +  \sqrt{5}  + 3 -  \sqrt{5} }{2 \sqrt{2} }  }

\sf{\Rightarrow \: \frac{1 +  \cancel{\sqrt{5}}  + 3 - \cancel{ \sqrt{5}} }{2 \sqrt{2} }  }

\sf{\Rightarrow \: \frac{4}{2 \sqrt{2} }  }

\sf{\Rightarrow \: \frac{\cancel{4}^{2} } {\cancel2 \sqrt{2} }  }

\sf{\Rightarrow  \frac{ \sqrt{2} \times  \sqrt{2}  }{ \sqrt{2} }}

\sf{\Rightarrow \:  \sqrt{2} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \ \: \: \: \: \: \: \: \: \: \: : \:(i)}

solving equation (ii)

\sf{\Rightarrow \sqrt{3  - 2\sqrt{2} } }

\sf{\Rightarrow \sqrt{1 + 2  - 2\sqrt{2} } }

\sf{\Rightarrow \sqrt{ (\sqrt{2}    - 1  )  ^{2}  \:  \:  \:  }}

\sf{\Rightarrow \:  \sqrt{2} - 1 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:  (ii)}

On subtracting (ii) from (i) we get

 \sf{\Rightarrow\sqrt{2}  - ( \sqrt{2}  - 1)}

\sf{\Rightarrow \sqrt{2}  -  \sqrt{2}  + 1}

\sf{\Rightarrow\cancel{ \sqrt{2} } - \cancel{ \sqrt{2} } + 1}

\sf{\Rightarrow1}

 \\

For More Information

  • (a + b)^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab
  • (a  -  b)^{2}  =  {a}^{2}  +  {b}^{2}   -  2ab
  • (a + b)(a - b)  =  {a}^{2}   -   {b}^{2}
  • (a + b + c)^{2}  =  {a}^{2}  +  {b}^{2}  + {c}^{2} +2ab + 2bc + 2ca
  • (a + b) ^{3}  =  {a}^{3}  + b^{3}  + 3ab(a + b)
  • (a  -  b) ^{3}  =  {a}^{3}   -  b^{3}   -  3ab(a  -  b)
  • a ^{3}  +  {b}^{3}  = (a + b)(a ^{2}  +  {b}^{2}  - ab)
  • a ^{3}   - {b}^{3}  = (a  -  b)(a ^{2}  +  {b}^{2}   +  ab)
Similar questions