Math, asked by manishmh982, 1 year ago

plz answer fast
answer should be 2/3.​

Attachments:

Answers

Answered by ItSdHrUvSiNgH
2

Step-by-step explanation:

\huge\blue{\underline{\underline{\bf Question}}}

______________________________________

 \displaystyle \lim_{x \:  \to \: 0} \frac{ {(1 + x)}^{ \frac{1}{3} }  -  {(1 - x)}^{ \frac{1}{3} }  }{x}

______________________________________

\huge\blue{\underline{\underline{\bf Answer}}}

 \implies \displaystyle \lim_{x \:  \to \: 0} \frac{ {(1 + x)}^{ \frac{1}{3} }  -  {(1 - x)}^{ \frac{1}{3} }  }{x}  \\  \\ we \: know \: that =  >  \\  \\  {a}^{3}  -  {b}^{3}  = (a - b)( {a}^{2}  +  {b}^{2}  + ab) \\  \\ let \: a =  {(1 + x)}^{ \frac{1}{3} }  \:  \: and \:  \: b =  {(1 - x)}^{ \frac{1}{3} }  \\  \\  \implies  {({(1 + x)}^{ \frac{1}{3} })}^{3} - {({(1  -  x)}^{ \frac{1}{3} })}^{3} =   \\   {(1 + x)}^{ \frac{1}{3} }  -  {(1 - x)}^{ \frac{1}{3} }  ( {(1 + x)}^{ \frac{2}{3} }  +  {(1 - x)}^{ \frac{2}{3} }  {(1 - x)}^{ \frac{1}{3} }  \\  \\ \implies  \displaystyle \lim_{x \to \: 0}   \frac{{(1 + x)}^{ \frac{1}{3} }  -  {(1 - x)}^{ \frac{1}{3} }}{x} =  \frac{  {({(1 + x)}^{ \frac{1}{3} })}^{3} - {({(1  -  x)}^{ \frac{1}{3} })}^{3}  }{  x ( {(1 + x)}^{ \frac{2}{3} }  +  {(1 - x)}^{ \frac{2}{3} }  {(1 - x)}^{ \frac{1}{3} }  ) }  \\  \\  \implies  \frac{2 \cancel{x}}{ \cancel{x} {(1)}^{ \frac{2}{3} } +  {(1)}^{ \frac{2}{3} }  +  {(1)}^{ \frac{1}{3} }  }  \\   \\  \implies  \frac{2}{1 + 1 + 1}  \\  \\  \implies \huge \boxed{  \frac{2}{3} }

Similar questions