Physics, asked by avanish15072000, 11 months ago

plz answer fast....full explanation plz
CV is constant


Attachments:

Answers

Answered by Anonymous
1

{\underline{\sf{Question}}}

If cv is constant term , then integrate

 \sf \int \limits_{0}^{q}  \dfrac{dq}{cv - q}

{\underline{\sf{Theory}}}

1) \sf \int \dfrac{1}{x}  =  log(x)  + c

2) \sf  \int \: x {}^{n} dx =  \dfrac{x {}^{n + 1} }{ n+ 1}  + c

{\underline{\sf{Solution}}}

\sf \int \limits_{0}^{q}  \dfrac{dq}{cv - q}

 = \sf \int \limits_{0}^{q} - 1 \times   \dfrac{dq}{q - cv}

 =  - \sf \int \limits_{0}^{q}  \dfrac{dq}{q - cv}

 =  \sf - [ log(q - cv)] {}^{q}_{0}

  \sf =  - [ \log(q - cv) -  \log( - cv)]

We know that

 \log \: a -  \log \: b =  \log \frac{a}{b}

 \sf =  - [ \log (\dfrac{q - cv}{ - cv}) ]

 \sf =  \log( \dfrac{ - cv}{q - cv} )

It is the required solution!

Similar questions