Math, asked by BhavyeArora, 7 months ago

plz answer fast
I wI'll mark the correct answer as brainliest​

Attachments:

Answers

Answered by abhi569
2

1/(root4 + root5) + 1/(root5 + root6) + 1/(root6 + root7) + 1/(root7 + root8) + 1/(root8 + root9) = 1

Step-by-step explanation:

In all, numbers are like: \frac{1}{\sqrt{n} +\sqrt{n+1}}

                  = \frac{1}{\sqrt{n}+\sqrt{n+1}}

                  = \small{\frac{1}{\sqrt{n}+\sqrt{n+1}}\times\frac{\sqrt{n}-\sqrt{n+1}}{\sqrt{n}-\sqrt{n+1}} }

                  = \frac{\sqrt{n}-\sqrt{n+1}}{(\sqrt{n})^2-(\sqrt{n+1})^2}

                  = \frac{\sqrt{n}-\sqrt{n+1}}{n-(n+1)}

                  = \frac{\sqrt{n}-\sqrt{n+1}}{n-n-1}

                  = \frac{\sqrt{n}-\sqrt{n+1}}{-1}

                  = \small{-\sqrt{n}+\sqrt{n+1}}

Therefore,

\frac{1}{\sqrt{4}+\sqrt{5}}=-\sqrt4 +\sqrt5

\frac{1}{\sqrt{5}+\sqrt{6}}=-\sqrt5 +\sqrt6

 Similarly with all, now it is:

⇒ (-√4 + √5) + (-√5 + √6) + (-√6 + √7) + (-√7 + √8) + (-√8 + √9)

⇒ -√4 + √5 - √5 + √6 - √6 + √7 - √7 + √8 - √8 + √9

⇒ - √4 + √9

⇒ - 2 + 3

⇒ 3 - 2

⇒ 1  

   Proved

Answered by Anonymous
3

 \frac{ 1}{√4+√5 } +  \frac{ 1}{√5+√6 } +  \frac{ 1}{√6+√7 } +  \frac{ 1}{√7+√8 } +  \frac{ 1}{√ 8+√9 } +  = 1

\frac{ 1}{√4+√5 }  \times  \frac{√4  -  √5 }{√4  -  √5 }  =  \frac{√4 + √5}{{(√4  -  √5) }^{2} }}

 \frac{ 1}{√4+√5 }  \times  \frac{√4 -  √5 }{√4  -  √5 }  =  \frac{√4  -  √5}{ - 1}  =  - √4   +   √5

\frac{ 1}{√5+√6 }  \times  \frac{√5  -  √6 }{√5  -  √6 }  =  \frac{√5 + √6}{{(√5  -  √6) }^{2}}

  \frac{ 1}{√5+√6 }  \times  \frac{√5  -  √6 }{√5  -  √6 }  =  \frac{√5  -  √6}{ - 1}  =  - √5   +   √6

  \frac{ 1}{√6+√7 }  \times  \frac{√6 -  √7 }{√6  -  √7 }  =  \frac{√6+ √7}{{(√6  -  √7) }^{2} }

  \frac{ 1}{√6+√7 }  \times  \frac{√6  -  √7 }{√6  -  √7 }  =  \frac{√6  -  √7}{ - 1}  =  - √6   +   √7

   \frac{ 1}{√7+√8 }  \times  \frac{√7-  √8 }{√7  -  √8 }  =  \frac{√7+ √8}{{(√7  -  √8) }^{2} }

  \frac{ 1}{√7+√8 }  \times  \frac{√7  -  √8 }{√7  -  √8 }  =  \frac{√7  -  √8}{ - 1}  =  - √7   +   √8

\frac{ 1}{√8+√9 }  \times  \frac{√8  -  √9 }{√8  -  √9 }  =  \frac{√8 + √9}{{(√8  -  √9) }^{2} }

 \frac{ 1}{√8+√9 }  \times  \frac{√8  -  √9 }{√8  -  √9 }  =  \frac{√8 -  √9}{ - 1}  =  - √8  +   √9

 - √4+√5  -  √5+√6   - √6+√7  -  √7+√8  -  √8+√9  = 1

 - √4+√9 = 1

Putting value of √4 and √9:-

 - 2 + 3 = 1

LHS = RHS

Hence proved.

Similar questions