Math, asked by HarshivNaggal, 1 year ago

plz answer fast
prove that ⤵⤵⤵⤵⤵⤵↪↪↪↪↪↪
 \sin(theta )  - 2 \sin^{3} theta \div 2 \ \cos^{3} theta -  \cos(theta)  =  \tan(theta)

Answers

Answered by Anonymous
10
We have to prove that :

 \frac{ \sin \alpha - 2 { \sin}^{3} \alpha }{2 { \cos }^{3} \alpha - \cos \alpha } = \tan\alpha

On taking LHS :

 \frac{ \sin\alpha - 2 { \sin}^{3} \alpha }{2 { \cos }^{3} \alpha - \cos \alpha } \\ \\ = > \frac{ \sin\alpha (1 - 2 { \sin}^{2} \alpha )}{ \cos \alpha (2 { \cos }^{2} \alpha - 1) } \\ \\ As \: we \: know \: that: \: 2 { \cos }^{2} \alpha - 1 = 1 - 2 { \sin }^{2} \alpha = \cos2 \alpha \\ \\ = > \frac{ \sin\alpha \cos2 \alpha }{ \cos\alpha \cos2 \alpha } \\ \\ = > \tan\alpha = RHS \\ \\ HENCE \: PROVED

Anonymous: tere help chaiye
NishadAnjali: hlo
NishadAnjali: ashukarheria
Anonymous: yes
NishadAnjali: can you make my friend
NishadAnjali: give me answer
NishadAnjali: hlo
NishadAnjali: brother
Similar questions