Math, asked by dondon30031981420, 7 months ago

plz answer for this question ​

Attachments:

Answers

Answered by MysticPetals
11

Solution

 \dfrac{ {x}^{2} + 8 }{ {x}^{2} - 4 }  \div  \dfrac{ {x}^{2} - 2x + 4 }{x + 2}

Firstly let us simplify all the terms and try to cancel out the common terms.

 \longrightarrow \:  {x}^{3}  + 8 =  {x}^{3}  +  {2}^{3}

  {a}^{3}  +  {b}^{3}  = (a + b)( {a}^{2} - ab +  {b}^{2}  )

here \: a = x \: and \: b = 2 \:

 \bf\implies{x}^{3}+{2}^{3}=(x+2)(x^{2}- 2x+4)

 \longrightarrow \:  {x}^{2}  - 4 =  {x}^{2}  -  {2}^{2}

{a}^{2}  -  {b}^{2}  = (a + b)(a - b)

here \: a = x \: and \: b = 2

 \bf \: \implies \:  {x}^{2}  -  {2}^{2}  = (x + 2)(x - 2)

Now Let's solve it ,

 \dfrac{ {x}^{2} + 8 }{ {x}^{2} - 4 }  \div  \dfrac{ {x}^{2} - 2x + 4 }{x + 2}

When we want to convert division into multiplication , we need to reciprocate the other fraction !!

 \dfrac{ {x}^{2} + 8 }{ {x}^{2} - 4 }   \times    \dfrac{x + 2}{ {x}^{2} - 2x + 4 }

By substitute the simplified terms , we get

 \dfrac{(x + 2)( {x}^{2} - 2x + 4 )}{(x + 2)( x - 2)}  \times  \dfrac{x + 2}{ {x}^{2} - 2x + 4 }

  \bf \:  \implies \:   \dfrac{x + 2}{x - 2}

_______________________ .

➻ What's called reciprocal ??

Reciprocal mean we need to change the places of numerator as denominator and vice versa.

➻ Simplifying the terms and solving the terms will make us easy and better.

Answered by pinkybansal1101
3

Answer:

{\huge{\boxed{\mathcal{\red{\star An}{\green{sw} {\blue{er\star}}}}}}}

EXPRESSION

\huge \frac{ {x}^{3} + 8 }{ {x}^{2} - 4 }  \div  \frac{ {x}^{2}   - 2x + 4}{x + 2}

  • Firstly we will simplify all the terms and will try to cancel out the common terms

 {x}^{3}  + 8 =  {x}^{3}  +  {2}^{3}

We know

\large\longrightarrow {a}^{3}  +  {b}^{3 }  = (a + b)( {a}^{2}  - 2ab +  {b}^{2} )

here \: a = x \: and \: b = 2

 \large = ) {x}^{3}  +  {2}^{3}  = (x + 2)( {x}^{2}  - 2x - 4)

  {x}^{2}  - 4 =  {x}^{2}  -  {2}^{2}

We Know

 \large\longrightarrow {a}^{2}  -  {b}^{2}  = (a + b)(a - b)

here \: a = x \: and \: b = 2

\large = ) {x}^{2}  -  {2}^{2}  = (x  + 2)(x - 2)

\large\boxed{\fcolorbox{red} {black}{\color{yellow}{Solution}}}

\huge \frac{ {x}^{3} + 8 }{ {x}^{2} - 4 }  \div  \frac{ {x}^{2}   - 2x + 4}{x + 2}

  • Now we will convert division to multiplication
  • When we want to convert them we reciprocate the fraction

\huge \frac{ {x}^{3} + 8 }{ {x}^{2} - 4 }   \times  \frac{ (x + 2)}{ {x}^{2}   - 2x + 4}

  • Now we will substitute the simplified terms .

\large \frac{(x + 2)( {x}^{2}  - 2x -  + 4)}{(x + 2)(x - 2)}   \times  \frac{(x + 2)}{ {x}^{2} - 2x + 4 }

\huge\orange{\boxed{ \longrightarrow \frac{ (x + 2)}{(x - 2)}}}

 <marquee behaviour-move> <font color="fushsia"> <h1>_____________________</ ht> </marquee>

Please Note :

Reciprocal means to change the places of numerator and denominator.

Simplifying the terms help us to solve easily .

 <marquee behaviour-move> <font color="fushsia"> <h1>_____________________</ ht> </marquee>

\huge{\mathbb{\purple{ Hop{\pink{eIt{\green{H\blue{e{\red{ l{\orange{ps}}}}}}}}}}}}

\blue{Mark  \: as \:  BRAINLIEST \star}</h2><h2></h2><h2>

\huge\purple{\mathfrak{@phenom}}

Similar questions