Math, asked by dondon30031981420, 5 months ago

plz answer fot this question​

Attachments:

Answers

Answered by siturani2408
2

Answer:

8X²+6X-9

8X²+12X-6X-9

4X(2X+3)×-3(2X+3)

(2X+3)(4X-3)

Answered by sethrollins13
66

1. Factorise 8x² + 6x - 9 :

By Splitting Middle Term :

\longmapsto\tt{{8x}^{2}+(12x-6x)-9}

\longmapsto\tt{{8x}^{2}+12x-6x-9}

\longmapsto\tt{4x(2x+3)\:-3(2x+3)}

\longmapsto\tt\bf{(4x-3)\:\:(2x+3)}

2. Expand (4a + b)³ :

Using Identity : (x + y)³ = x³ + y³ + 3xy (x+y)

\longmapsto\tt{{(4a)}^{3}+{(b)}^{3}+3(4a)(b)\:(4a+b)}

\longmapsto\tt{{64a}^{3}+{b}^{3}+3(4ab)\:(4a+b)}

\longmapsto\tt{{64a}^{3}+{b}^{3}+12ab\:(4a+b)}

\longmapsto\tt{{64a}^{3}+{b}^{3}+48{a}^{2}b+12a{b}^{2}}

\longmapsto\tt\bf{{64a}^{3}+48{a}^{2}b+12a{b}^{2}+{b}^{3}}

_______________________

Some More Identities :

\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{minipage}{7 cm}\boxed{\bigstar\:\:\textbf{\textsf{Algebric\:Identity}}\:\bigstar}\\\\1)\bf\:(A+B)^{2} = A^{2} + 2AB + B^{2}\\\\2)\sf\: (A-B)^{2} = A^{2} - 2AB + B^{2}\\\\3)\bf\: A^{2} - B^{2} = (A+B)(A-B)\\\\4)\sf\: (A+B)^{2} = (A-B)^{2} + 4AB\\\\5)\bf\: (A-B)^{2} = (A+B)^{2} - 4AB\\\\6)\sf\: (A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}\\\\7)\bf\:(A-B)^{3} = A^{3} - 3AB(A-B) + B^{3}\\\\8)\sf\: A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})\\\\\end{minipage}}\end{gathered}\end{gathered}\end{gathered}

Similar questions