Math, asked by rubyjha8288, 1 year ago

plz answer..i need help fast

Attachments:

Answers

Answered by abhi569
4

 \bold{ \: to \: prove :} \:  \:  \frac{ \sin\theta}{1 -  \cos\theta }  \:  = cosec \theta \:  +  \cot \theta



LHS ,

 \frac{ \sin \theta }{1 - cos \theta}


 \mathbf{ \underline{Multiply \:  and \:  Divide  \: by   } \: ( 1 + cos \theta ) , }



  =  > \frac{(sin \theta)( \: 1 +  \: cos \theta)}{(1 - cos \theta)(1 + cos \theta)}  \\  \\  \\  \\  =  >  \frac{sin \theta \:  + sin \theta \: cos \theta}{1 -  {cos}^{2}  \theta}  \\  \\  \\  \\  =  >  \frac{sin \theta \:  + sin \theta \: cos \theta \: }{sin ^{2}  \theta}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bold{  | \: 1 -  {cos}^{2}  \theta \:  =  {sin}^{2}  \theta} \\  \\  \\  \\  =  >  \frac{ \sin \theta}{ {sin}^{2}  \theta}  +  \frac{ \sin \theta \:  \cos \theta }{ {sin}^{2} \theta }  \\  \\  \\  \\   =  >  \frac{1}{sin \theta}  +  \frac{cos \theta}{ \sin \theta}  \\  \\  \\  \\  =  > cosec \theta \:  + cot \theta \\  \\  \\  \\  \\  \\  \\   \boxed{\bold{ \underline{hence \: proved.}}}

rubyjha8288: Thanks
abhi569: Welcome
abhi569: Hahahaha
rubyjha8288: i found it difficult that's why i uploaded..
abhi569: Oi
abhi569: Ok*
Similar questions