Math, asked by aimanshariff345, 1 year ago

Plz answer in step by step procedure....
Points will be awarded.... Thanks!

Attachments:

Answers

Answered by MaheswariS
0

Answer:

\frac{p\:sin\theta-q\:cos\theta}{p\:sin\theta-q\:cos\theta}=\frac{p^2-q^2}{p^2+q^2}

Step-by-step explanation:

Given:

sec\theta=\frac{\sqrt{p^2+q^2}}{q}

cos\theta=\frac{q}{\sqrt{p^2+q^2}}

We know that

\boxed{sin^2\theta=1-cos^2\theta}

sin^2\theta=1-\frac{q^2}{p^2+q^2}

sin^2\theta=\frac{p^2+q^2-q^2}{p^2+q^2}

sin^2\theta=\frac{p^2}{p^2+q^2}

\implies\:sin\theta=\frac{p}{\sqrt{p^2+q^2}}

Now,

\frac{p\:sin\theta-q\:cos\theta}{p\:sin\theta-q\:cos\theta}

=\frac{p(\frac{p}{\sqrt{p^2+q^2}})-q(\frac{q}{\sqrt{p^2+q^2}})}{p(\frac{p}{\sqrt{p^2+q^2}})-q(\frac{q}{\sqrt{p^2+q^2}})}

=\frac{\frac{p^2}{\sqrt{p^2+q^2}}-\frac{q^2}{\sqrt{p^2+q^2}}}{\frac{p^2}{\sqrt{p^2+q^2}}+\frac{q^2}{\sqrt{p^2+q^2}}}

=\frac{\frac{p^2-q^2}{\sqrt{p^2+q^2}}}{\frac{p^2+q^2}{\sqrt{p^2+q^2}}}

=\frac{p^2-q^2}{p^2+q^2}

\implies\:\boxed{\frac{p\:sin\theta-q\:cos\theta}{p\:sin\theta-q\:cos\theta}=\frac{p^2-q^2}{p^2+q^2}}

Similar questions