Geography, asked by mateen786786, 9 months ago

plz answer it correctly .......................​

Attachments:

Answers

Answered by amitkumar44481
8

Question :

Sum of the areas of two square is 850 m². If the difference of their perimeter is 40 m. Find the sides of the two squares.

AnsWer :

a= 25 m ,and b = 15 m.

Formula Use :

 \tt  \red\star \: area \: of \: square  =  {(sides)}^{2} . \\  \tt  \red\star \: perimeter \: of \: square  = 4 \: sides.

Explanation :

Let the area of first square be a and other be b.

Sum of area of two square is 840 m².

Calculation :

 \:  \:  \tt \: {a }^{2}  +{ b }^{2}  = 850. -  -  - (1) \\  \:  \:  \tt  4a  -  4b = 40.  \\ \tt \:  \:  \:  \:  \:  \:  \:   a - b =  \frac{ \cancel{40}}{ \cancel4}  \\  \tt \: \:  \:  \:  \:   \:  \: a - b = 10. -  -  - (2)

Taking, equation (2), we get

 \tt \:  \: a - b = 10. \\  \tt \:  \: a = 10 + b. -  -  -( 3)

Now, Putting the equation (3) in equation (1)

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt {a}^{2}  +  {b}^{2}  = 850. \\  \tt \leadsto {(10 + b)}^{2}  +  {b}^{2}  = 850.

 \leadsto \tt 100 +  {b}^{2}  + 20b +  {b}^{2}  = 850. \\  \leadsto \tt2 {b}^{2}  + 20b = 850 - 100.

\leadsto \tt2( {b}^{2}  + 10b) = 750. \\ \leadsto \tt{b}^{2}  + 10b =  \frac{ \cancel{750}}{ \cancel2}

\leadsto \tt {b}^{2}  + 10b = 375.  \\ \leadsto \tt {b}^{2}  + 10b  -  375 = 0.

</p><p></p><p>\begin{array}{r | l}</p><p></p><p>5 &amp; 375 \\</p><p></p><p>\cline{2-2} 5 &amp; 75 \\</p><p></p><p>\cline{2-2} 5 &amp; 15 \\</p><p></p><p>\cline{2-2} 3 &amp; 3 \\</p><p></p><p>\cline{2-2}    &amp;  1 </p><p></p><p>\end{array}

\leadsto \tt {b}^{2}  + 25b - 15b  -  375. \\</p><p>\leadsto \tt b(b + 25)- 15(b   +   25) = 0. \\ \leadsto \tt (b + 25)(b    -    15) = 0.

Either,

The value of b,

 \tt \leadsto b - 15 = 0. \:  \:  \:  \:  \:  \:  \:  \:  \: b  +  25 = 0. \\  \:  \:  \:  \:  \:  \:  \:  \:  \tt  \boxed{b = 15. \:  \:  \: and \:  \:  \: b =  - 25.}

 \:  \: \boxed{b =  - 25  \: {m} .} \\  \:  \:  \tt a = 10 + b. \\   \tt   \: \: a = 10 - 25. \\  \tt \:  \: a =  - 15 \:  {m} . \\ \tt or \\   \:  \boxed{b = 15 \:  {m} .} \\  \tt  \:  \: a = 10  +  15.  \\  \tt \:  \:  a = 25 \:  {m}.

Area never be negative so, take positive,

Therefore, the value of side of square is a= 25 m and b= 15 m.

Similar questions