Physics, asked by ruhildiksha45, 7 months ago

plz answer it correctly​

Attachments:

Answers

Answered by shadowsabers03
3

Let the mass of the particle be \sf{m.} Let \theta be the angle made by the vertical so that its angular displacement will be \sf{\pi-\theta.}

At the point B, the centripetal force is given by,

\sf{\longrightarrow \dfrac{mv^2}{L}=T_B-mg\cos(\pi-\theta)}

\sf{\longrightarrow \dfrac{mv^2}{L}=T_B+mg\cos\theta}

Then, tension in the string at point B,

\sf{\longrightarrow T_B=\dfrac{mv^2}{L}-mg\cos\theta}

We've to find value of \theta for which,

\sf{\longrightarrow T_B=0}

\sf{\longrightarrow \dfrac{mv^2}{L}-mg\cos\theta=0}

\sf{\longrightarrow mv^2=mgL\cos\theta}

Multiplying by \sf{\dfrac{1}{2},}

\sf{\longrightarrow \dfrac{1}{2}\,mv^2=\dfrac{1}{2}\,mgL\cos\theta\quad\quad\dots(1)}

Applying energy conservation at points A and B,

\sf{\longrightarrow \dfrac{1}{2}\,mu^2=\dfrac{1}{2}\,mv^2+mg(L-L\cos(\pi-\theta))}

\sf{\longrightarrow \dfrac{3}{2}\,mgL=\dfrac{1}{2}\,mv^2+mgL(1+\cos\theta)}

\sf{\longrightarrow \dfrac{1}{2}\,mv^2=mgL\left(\dfrac{1}{2}-\cos\theta\right)}

From (1),

\sf{\longrightarrow \dfrac{1}{2}\,mgL\cos\theta=mgL\left(\dfrac{1}{2}-\cos\theta\right)}

\sf{\longrightarrow \cos\theta=1-2\cos\theta}

\sf{\longrightarrow \cos\theta=\dfrac{1}{3}}

\sf{\longrightarrow\underline{\underline{\theta=\cos^{-1}\left(\dfrac{1}{3}\right)}}}

Hence 4th option is the answer.

Attachments:
Answered by wwwuamuam
3

hey mate

d) cos^-1 (1/3)

is the answer

Similar questions