plz answer it .don't spam in answer box
Answers
Let's Start:- (i) In triangle BDC
∠DCB + ∠BDC + ∠DBC = 180° [Angle Sum Property ]
25° + 100° + ∠DBC = 180°
∠DBC = 180° - 125°
∠B = 55°
(ii) ∵ DE ║ BC and DC is transversal
so, ∠EDC = ∠DCB = 55° [ Alternate interior angles ]
(iii) ∠BDC + ∠EDC + ∠ADE = 180° [ Linear Pair ]
⇒ 100° + 25° + ∠ADE = 180°
⇒ ∠ADE = 180° - 125°
⇒ ∠ADE = 55°
(iv) In triangle ADE,
∠ADE + ∠DAE + ∠AED = 180° [Angle Sum Property ]
55° + 55° + ∠AED = 180°
∠AED = 180° - 110°
∠AED = 70°
(v) ∠AED + ∠DEC = 180° [ Linear Pair ]
70° + ∠DEC = 180°
∠DEC = 180° - 70°
∠DEC = 110°
(vi) In triangle DEC,
∠EDC + ∠DEC + ∠DCE = 180° [ Angle Sum Property ]
25° + 110° + ∠DCE = 180°
∠DCE = 180° - 135°
∠DCE = 45°
(vii) ∠DEC + ∠DCB = ∠ACB
⇒ 45° + 25° = ∠ACB
⇒ ∠ACB = 70°