Math, asked by vedantpansare2005, 9 months ago

plz answer it guys l need help​

Attachments:

Answers

Answered by pulakmath007
16

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

 \sf{ \: If \:  x+ iy = a + ib  \: then \: x = a \:  \: and \:  \: y = b\: }

TO DETERMINE

The values of a and b when

 \sf { \: (a + b)(2 + i) = b + 1 + (10 + 2a)i \: }

 \implies \:  \sf { \: 2(a + b) + i(a + b)= b + 1 + (10 + 2a)i \: }

Comparing real and imaginary parts we get

 \implies \:  \sf { \: 2(a + b) = b + 1 \: }

 \implies \:  \sf { \: 2a + b =   1 \: } \: ......(1)

Also

  \:  \sf { \: (a + b)=  (10 + 2a) \: }

 \implies \:   \:  \sf { \: a  -  b=   - 10 \: }.......(2)

Equation (1) + Equation (2) gives

  \:  \sf { \: 3a=   - 9 \: }

 \implies \:   \:  \sf { \: a=   - 3 \: }

From Equation (2)

  \:  \sf { \: b=   - 3 + 10 = 7\: }

RESULT

 \boxed{ \:  \:  \sf { \: a=   - 3 \:  \: and \: \:  b = 7 \: }  \: }

Answered by Anonymous
4

Answer:

a = -3 and b = 7

Step-by-step explanation:

:\implies\sf (a + b) \: (2 + i) = b + 1 + (10 + 2a)i \\  \\

:\implies\sf 2a + 2b + \:  ia + ib= b + 1 + 10i + 2ai \\  \\

_______________________

Therefore,

:\implies\sf 2a + 2b = b + 1 \\  \\

:\implies\sf 2a + 2b  -  b  =  1 \\  \\

:\implies\sf 2a + b  =  1  \:  \: \:  \:  \:  \:  \:  \bigg \lgroup \bf equation \: (1) \bigg \rgroup\\  \\

_______________________

:\implies\sf a + b =  10 + 2a \\  \\

:\implies\sf b =  10 + 2a - a \\  \\

:\implies\sf b =  10 + a\:  \: \:  \:  \:  \:  \:  \bigg \lgroup \bf equation \: (2) \bigg \rgroup \\  \\

_____________________

Now, Putting equation (2) in equation (1) we get:

:\implies\sf 2a + b  =  1 \\  \\

:\implies\sf 2a + 10 + a =  1 \\  \\

:\implies\sf 3a+ 10  =  1 \\  \\

:\implies\sf 3a =  1 - 10 \\  \\

:\implies\sf 3a  =   - 9 \\  \\

:\implies\sf a =  \frac{ - 9}{3} \\  \\

:\implies \underline{ \boxed{\sf a  =  - 3 }}\\  \\

____________________

Substituting the value of a = -3 in equation (1) we get :

:\implies\sf 2a + b  =  1 \\  \\

:\implies\sf 2 ( - 3)+ b  =  1 \\  \\

:\implies\sf  - 6 + b  =  1 \\  \\

:\implies\sf  b  =  1 + 6 \\  \\

:\implies \underline{ \boxed{\sf b  =  7 }}\\  \\

Similar questions